1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
import argparse
import csv
import random
import numpy as np
from lapjv import lapjv
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import normalize
from Wasserstein_Distance import load_embeddings, process_corpus
def main(args):
run_method = list()
if input_paradigm == "all":
run_paradigm.extend("matching", "retrieval")
else:
run_paradigm.append(input_paradigm)
source_lang = args.source_lang
target_lang = args.target_lang
batch = args.batch
source_vectors_filename = args.source_vector
target_vectors_filename = args.target_vector
vectors_source = load_embeddings(source_vectors_filename)
vectors_target = load_embeddings(target_vectors_filename)
source_defs_filename = args.source_defs
target_defs_filename = args.target_defs
defs_source = [
line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8")
]
defs_target = [
line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8")
]
clean_source_corpus, clean_source_vectors, source_keys = process_corpus(
set(vectors_source.keys()), defs_source, vectors_source, source_lang
)
clean_target_corpus, clean_target_vectors, target_keys = process_corpus(
set(vectors_target.keys()), defs_target, vectors_target, target_lang
)
take = args.instances
common_keys = set(source_keys).intersection(set(target_keys))
take = min(len(common_keys), take) # you can't sample more than length
experiment_keys = random.sample(common_keys, take)
instances = len(experiment_keys)
clean_source_corpus = list(clean_source_corpus[experiment_keys])
clean_target_corpus = list(clean_target_corpus[experiment_keys])
if not batch:
print(
f"{source_lang} - {target_lang} "
+ f" document sizes: {len(clean_source_corpus)}, {len(clean_target_corpus)}"
)
del vectors_source, vectors_target, defs_source, defs_target
vocab_counter = CountVectorizer().fit(clean_source_corpus + clean_target_corpus)
common = [
w
for w in vocab_counter.get_feature_names()
if w in clean_source_vectors or w in clean_target_vectors
]
W_common = []
for w in common:
if w in clean_source_vectors:
W_common.append(np.array(clean_source_vectors[w]))
else:
W_common.append(np.array(clean_target_vectors[w]))
W_common = np.array(W_common)
W_common = normalize(W_common) # default is l2
vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm="l2")
vect_tfidf.fit(clean_source_corpus + clean_target_corpus)
X_idf_source = vect_tfidf.transform(clean_source_corpus)
X_idf_target = vect_tfidf.transform(clean_target_corpus)
X_idf_source_array = X_idf_source.toarray()
X_idf_target_array = X_idf_target.toarray()
S_emb_source = np.matmul(X_idf_source_array, W_common)
S_emb_target = np.matmul(X_idf_target_array, W_common)
S_emb_target_transpose = np.transpose(S_emb_target)
cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose)
for paradigm in run_paradigm:
if paradigm == 'matching':
cost_matrix = cost_matrix * -1000
row_ind, col_ind, a = lapjv(cost_matrix, verbose=False)
result = zip(row_ind, col_ind)
hit_at_one = len([x for x, y in result if x == y])
percentage = hit_at_one / instances * 100
if not batch:
print(f"{hit_at_one} definitions have been matched correctly")
if batch:
fields = [
f"{source_lang}",
f"{target_lang}",
f"{instances}",
f"{hit_at_one}",
f"{percentage}",
]
with open("semb_matcing_results.csv", "a") as f:
writer = csv.writer(f)
writer.writerow(fields)
if paradigm == 'retrieval':
hit_at_one = len([x for x, y in enumerate(cost_matrix.argmax(axis=1)) if x == y])
percentage = hit_at_one / instances * 100
if not batch:
print(f"{hit_at_one} definitions have retrieved correctly")
if batch:
fields = [
f"{source_lang}",
f"{target_lang}",
f"{instances}",
f"{hit_at_one}",
f"{percentage}",
]
with open("semb_retrieval_results.csv", "a") as f:
writer = csv.writer(f)
writer.writerow(fields)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="align dictionaries using sentence embedding representation"
)
parser.add_argument("source_lang", help="source language short name")
parser.add_argument("target_lang", help="target language short name")
parser.add_argument("source_vector", help="path of the source vector")
parser.add_argument("target_vector", help="path of the target vector")
parser.add_argument("source_defs", help="path of the source definitions")
parser.add_argument("target_defs", help="path of the target definitions")
parser.add_argument(
"-n",
"--instances",
help="number of instances in each language to retrieve",
default=1000,
type=int,
)
parser.add_argument(
"-b",
"--batch",
action="store_true",
help="running in batch (store results in csv) or"
+ "running a single instance (output the results)",
)
parser.add_argument(
"paradigm",
choices=["all", "retrieval", "matching"],
default="all",
help="which paradigms to align with",
)
args = parser.parse_args()
main(args)
|