import argparse import csv import random import numpy as np from lapjv import lapjv from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.preprocessing import normalize from Wasserstein_Distance import load_embeddings, process_corpus def main(args): run_method = list() if input_paradigm == "all": run_paradigm.extend("matching", "retrieval") else: run_paradigm.append(input_paradigm) source_lang = args.source_lang target_lang = args.target_lang batch = args.batch source_vectors_filename = args.source_vector target_vectors_filename = args.target_vector vectors_source = load_embeddings(source_vectors_filename) vectors_target = load_embeddings(target_vectors_filename) source_defs_filename = args.source_defs target_defs_filename = args.target_defs defs_source = [ line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") ] defs_target = [ line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") ] clean_source_corpus, clean_source_vectors, source_keys = process_corpus( set(vectors_source.keys()), defs_source, vectors_source, source_lang ) clean_target_corpus, clean_target_vectors, target_keys = process_corpus( set(vectors_target.keys()), defs_target, vectors_target, target_lang ) take = args.instances common_keys = set(source_keys).intersection(set(target_keys)) take = min(len(common_keys), take) # you can't sample more than length experiment_keys = random.sample(common_keys, take) instances = len(experiment_keys) clean_source_corpus = list(clean_source_corpus[experiment_keys]) clean_target_corpus = list(clean_target_corpus[experiment_keys]) if not batch: print( f"{source_lang} - {target_lang} " + f" document sizes: {len(clean_source_corpus)}, {len(clean_target_corpus)}" ) del vectors_source, vectors_target, defs_source, defs_target vocab_counter = CountVectorizer().fit(clean_source_corpus + clean_target_corpus) common = [ w for w in vocab_counter.get_feature_names() if w in clean_source_vectors or w in clean_target_vectors ] W_common = [] for w in common: if w in clean_source_vectors: W_common.append(np.array(clean_source_vectors[w])) else: W_common.append(np.array(clean_target_vectors[w])) W_common = np.array(W_common) W_common = normalize(W_common) # default is l2 vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm="l2") vect_tfidf.fit(clean_source_corpus + clean_target_corpus) X_idf_source = vect_tfidf.transform(clean_source_corpus) X_idf_target = vect_tfidf.transform(clean_target_corpus) X_idf_source_array = X_idf_source.toarray() X_idf_target_array = X_idf_target.toarray() S_emb_source = np.matmul(X_idf_source_array, W_common) S_emb_target = np.matmul(X_idf_target_array, W_common) S_emb_target_transpose = np.transpose(S_emb_target) cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) for paradigm in run_paradigm: if paradigm == 'matching': cost_matrix = cost_matrix * -1000 row_ind, col_ind, a = lapjv(cost_matrix, verbose=False) result = zip(row_ind, col_ind) hit_at_one = len([x for x, y in result if x == y]) percentage = hit_at_one / instances * 100 if not batch: print(f"{hit_at_one} definitions have been matched correctly") if batch: fields = [ f"{source_lang}", f"{target_lang}", f"{instances}", f"{hit_at_one}", f"{percentage}", ] with open("semb_matcing_results.csv", "a") as f: writer = csv.writer(f) writer.writerow(fields) if paradigm == 'retrieval': hit_at_one = len([x for x, y in enumerate(cost_matrix.argmax(axis=1)) if x == y]) percentage = hit_at_one / instances * 100 if not batch: print(f"{hit_at_one} definitions have retrieved correctly") if batch: fields = [ f"{source_lang}", f"{target_lang}", f"{instances}", f"{hit_at_one}", f"{percentage}", ] with open("semb_retrieval_results.csv", "a") as f: writer = csv.writer(f) writer.writerow(fields) if __name__ == "__main__": parser = argparse.ArgumentParser( description="align dictionaries using sentence embedding representation" ) parser.add_argument("source_lang", help="source language short name") parser.add_argument("target_lang", help="target language short name") parser.add_argument("source_vector", help="path of the source vector") parser.add_argument("target_vector", help="path of the target vector") parser.add_argument("source_defs", help="path of the source definitions") parser.add_argument("target_defs", help="path of the target definitions") parser.add_argument( "-n", "--instances", help="number of instances in each language to retrieve", default=1000, type=int, ) parser.add_argument( "-b", "--batch", action="store_true", help="running in batch (store results in csv) or" + "running a single instance (output the results)", ) parser.add_argument( "paradigm", choices=["all", "retrieval", "matching"], default="all", help="which paradigms to align with", ) args = parser.parse_args() main(args)