diff options
| -rw-r--r-- | sentence_emb_matching.py | 153 | ||||
| -rw-r--r-- | sentence_emb_retrieval.py | 151 | ||||
| -rw-r--r-- | sentence_embedding.py | 179 |
3 files changed, 179 insertions, 304 deletions
diff --git a/sentence_emb_matching.py b/sentence_emb_matching.py deleted file mode 100644 index 38812d7..0000000 --- a/sentence_emb_matching.py +++ /dev/null | |||
| @@ -1,153 +0,0 @@ | |||
| 1 | import argparse | ||
| 2 | |||
| 3 | parser = argparse.ArgumentParser(description='run matching using sentence embeddings and cosine similarity') | ||
| 4 | parser.add_argument('source_lang', help='source language short name') | ||
| 5 | parser.add_argument('target_lang', help='target language short name') | ||
| 6 | parser.add_argument('source_vector', help='path of the source vector') | ||
| 7 | parser.add_argument('target_vector', help='path of the target vector') | ||
| 8 | parser.add_argument('source_defs', help='path of the source definitions') | ||
| 9 | parser.add_argument('target_defs', help='path of the target definitions') | ||
| 10 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
| 11 | |||
| 12 | args = parser.parse_args() | ||
| 13 | |||
| 14 | source_lang = args.source_lang | ||
| 15 | target_lang = args.target_lang | ||
| 16 | |||
| 17 | def load_embeddings(path, dimension = 300): | ||
| 18 | """ | ||
| 19 | Loads the embeddings from a word2vec formatted file. | ||
| 20 | The first line may or may not include the word count and dimension | ||
| 21 | """ | ||
| 22 | vectors = {} | ||
| 23 | with open(path, mode='r', encoding='utf8') as fp: | ||
| 24 | first_line = fp.readline().rstrip('\n') | ||
| 25 | if first_line.count(' ') == 1: # includes the "word_count dimension" information | ||
| 26 | (word_count, dimension) = map(int, first_line.split()) | ||
| 27 | else: # assume the file only contains vectors | ||
| 28 | fp.seek(0) | ||
| 29 | for line in fp: | ||
| 30 | elems = line.split() | ||
| 31 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
| 32 | return vectors | ||
| 33 | |||
| 34 | source_vectors_filename = args.source_vector | ||
| 35 | target_vectors_filename = args.target_vector | ||
| 36 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 37 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 38 | |||
| 39 | source_defs_filename = args.source_defs | ||
| 40 | target_defs_filename = args.target_defs | ||
| 41 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | ||
| 42 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
| 43 | |||
| 44 | import numpy as np | ||
| 45 | from mosestokenizer import * | ||
| 46 | |||
| 47 | def clean_corpus_using_embeddings_vocabulary( | ||
| 48 | embeddings_dictionary, | ||
| 49 | corpus, | ||
| 50 | vectors, | ||
| 51 | language, | ||
| 52 | ): | ||
| 53 | ''' | ||
| 54 | Cleans corpus using the dictionary of embeddings. | ||
| 55 | Any word without an associated embedding in the dictionary is ignored. | ||
| 56 | ''' | ||
| 57 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
| 58 | words_we_want = set(embeddings_dictionary) | ||
| 59 | tokenize = MosesTokenizer(language) | ||
| 60 | for key, doc in enumerate(corpus): | ||
| 61 | clean_doc = [] | ||
| 62 | words = tokenize(doc) | ||
| 63 | for word in words: | ||
| 64 | if word in words_we_want: | ||
| 65 | clean_doc.append(word) | ||
| 66 | clean_vectors[word] = np.array(vectors[word].split()).astype(np.float) | ||
| 67 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
| 68 | keys.append(key) | ||
| 69 | clean_corpus.append(' '.join(clean_doc)) | ||
| 70 | tokenize.close() | ||
| 71 | return np.array(clean_corpus), clean_vectors, keys | ||
| 72 | |||
| 73 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 74 | set(vectors_source.keys()), | ||
| 75 | defs_source, | ||
| 76 | vectors_source, | ||
| 77 | source_lang, | ||
| 78 | ) | ||
| 79 | |||
| 80 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 81 | set(vectors_target.keys()), | ||
| 82 | defs_target, | ||
| 83 | vectors_target, | ||
| 84 | target_lang, | ||
| 85 | ) | ||
| 86 | |||
| 87 | import random | ||
| 88 | take = args.instances | ||
| 89 | |||
| 90 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
| 91 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 92 | experiment_keys = random.sample(common_keys, take) | ||
| 93 | |||
| 94 | instances = len(experiment_keys) | ||
| 95 | |||
| 96 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
| 97 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
| 98 | |||
| 99 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | ||
| 100 | |||
| 101 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 102 | |||
| 103 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
| 104 | |||
| 105 | vocab_counter = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
| 106 | common = [w for w in vocab_counter.get_feature_names() if w in clean_src_vectors or w in clean_target_vectors] | ||
| 107 | W_common = [] | ||
| 108 | |||
| 109 | for w in common: | ||
| 110 | if w in clean_src_vectors: | ||
| 111 | W_common.append(np.array(clean_src_vectors[w])) | ||
| 112 | else: | ||
| 113 | W_common.append(np.array(clean_target_vectors[w])) | ||
| 114 | |||
| 115 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | ||
| 116 | |||
| 117 | from sklearn.preprocessing import normalize | ||
| 118 | W_common = np.array(W_common) | ||
| 119 | W_common = normalize(W_common) # default is l2 | ||
| 120 | |||
| 121 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2') | ||
| 122 | vect_tfidf.fit(clean_src_corpus + clean_target_corpus) | ||
| 123 | X_idf_source = vect_tfidf.transform(clean_src_corpus) | ||
| 124 | X_idf_target = vect_tfidf.transform(clean_target_corpus) | ||
| 125 | |||
| 126 | print(f'Matrices are {X_idf_source.shape} and {W_common.shape}') | ||
| 127 | print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}') | ||
| 128 | |||
| 129 | X_idf_source_array = X_idf_source.toarray() | ||
| 130 | X_idf_target_array = X_idf_target.toarray() | ||
| 131 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
| 132 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
| 133 | |||
| 134 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
| 135 | |||
| 136 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
| 137 | |||
| 138 | from lapjv import lapjv | ||
| 139 | cost_matrix = cost_matrix * -1000 | ||
| 140 | row_ind, col_ind, a = lapjv(cost_matrix, verbose=False) | ||
| 141 | |||
| 142 | result = zip(row_ind, col_ind) | ||
| 143 | hit_one = len([x for x,y in result if x == y]) | ||
| 144 | print(f'{hit_one} definitions have been mapped correctly, shape of cost matrix: {str(cost_matrix.shape)}') | ||
| 145 | |||
| 146 | import csv | ||
| 147 | percentage = hit_one / instances * 100 | ||
| 148 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | ||
| 149 | |||
| 150 | with open('semb_matcing.csv', 'a') as f: | ||
| 151 | writer = csv.writer(f) | ||
| 152 | writer.writerow(fields) | ||
| 153 | |||
diff --git a/sentence_emb_retrieval.py b/sentence_emb_retrieval.py deleted file mode 100644 index 63ebcdc..0000000 --- a/sentence_emb_retrieval.py +++ /dev/null | |||
| @@ -1,151 +0,0 @@ | |||
| 1 | import argparse | ||
| 2 | |||
| 3 | parser = argparse.ArgumentParser(description='Run Retrieval using Sentence Embedding + Cosine') | ||
| 4 | parser.add_argument('source_lang', help='source language short name') | ||
| 5 | parser.add_argument('target_lang', help='target language short name') | ||
| 6 | parser.add_argument('source_vector', help='path of the source vector') | ||
| 7 | parser.add_argument('target_vector', help='path of the target vector') | ||
| 8 | parser.add_argument('source_defs', help='path of the source definitions') | ||
| 9 | parser.add_argument('target_defs', help='path of the target definitions') | ||
| 10 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int) | ||
| 11 | args = parser.parse_args() | ||
| 12 | |||
| 13 | source_lang = args.source_lang | ||
| 14 | target_lang = args.target_lang | ||
| 15 | |||
| 16 | def load_embeddings(path, dimension = 300): | ||
| 17 | """ | ||
| 18 | Loads the embeddings from a word2vec formatted file. | ||
| 19 | The first line may or may not include the word count and dimension | ||
| 20 | """ | ||
| 21 | vectors = {} | ||
| 22 | with open(path, mode='r', encoding='utf8') as fp: | ||
| 23 | first_line = fp.readline().rstrip('\n') | ||
| 24 | if first_line.count(' ') == 1: # includes the "word_count dimension" information | ||
| 25 | (word_count, dimension) = map(int, first_line.split()) | ||
| 26 | else: # assume the file only contains vectors | ||
| 27 | fp.seek(0) | ||
| 28 | for line in fp: | ||
| 29 | elems = line.split() | ||
| 30 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
| 31 | return vectors | ||
| 32 | |||
| 33 | lang_source = args.source_lang | ||
| 34 | lang_target = args.target_lang | ||
| 35 | |||
| 36 | vectors_filename_source = args.source_vector | ||
| 37 | vectors_filename_target = args.target_vector | ||
| 38 | |||
| 39 | vectors_source = load_embeddings(vectors_filename_source) | ||
| 40 | vectors_target = load_embeddings(vectors_filename_target) | ||
| 41 | |||
| 42 | defs_filename_source = args.source_defs | ||
| 43 | defs_filename_target = args.target_defs | ||
| 44 | defs_source = [line.rstrip('\n') for line in open(defs_filename_source, encoding='utf8')] | ||
| 45 | defs_target = [line.rstrip('\n') for line in open(defs_filename_target, encoding='utf8')] | ||
| 46 | |||
| 47 | print('Read {} {} documents and {} {} documents'.format(len(defs_source), lang_source, len(defs_target), lang_target)) | ||
| 48 | |||
| 49 | import numpy as np | ||
| 50 | from mosestokenizer import * | ||
| 51 | |||
| 52 | def clean_corpus_using_embeddings_vocabulary( | ||
| 53 | embeddings_dictionary, | ||
| 54 | corpus, | ||
| 55 | vectors, | ||
| 56 | language, | ||
| 57 | ): | ||
| 58 | ''' | ||
| 59 | Cleans corpus using the dictionary of embeddings. | ||
| 60 | Any word without an associated embedding in the dictionary is ignored. | ||
| 61 | Adds '__target-language' and '__source-language' at the end of the words according to their language. | ||
| 62 | ''' | ||
| 63 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
| 64 | words_we_want = set(embeddings_dictionary) | ||
| 65 | tokenize = MosesTokenizer(language) | ||
| 66 | for key, doc in enumerate(corpus): | ||
| 67 | clean_doc = [] | ||
| 68 | words = tokenize(doc) | ||
| 69 | for word in words: | ||
| 70 | if word in words_we_want: | ||
| 71 | clean_doc.append(word + '__%s' % language) | ||
| 72 | clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float) | ||
| 73 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
| 74 | keys.append(key) | ||
| 75 | clean_corpus.append(' '.join(clean_doc)) | ||
| 76 | tokenize.close() | ||
| 77 | return np.array(clean_corpus), clean_vectors, keys | ||
| 78 | |||
| 79 | clean_corpus_source, clean_vectors_source, keys_source = clean_corpus_using_embeddings_vocabulary( | ||
| 80 | set(vectors_source.keys()), | ||
| 81 | defs_source, | ||
| 82 | vectors_source, | ||
| 83 | lang_source, | ||
| 84 | ) | ||
| 85 | |||
| 86 | clean_corpus_target, clean_vectors_target, keys_target = clean_corpus_using_embeddings_vocabulary( | ||
| 87 | set(vectors_target.keys()), | ||
| 88 | defs_target, | ||
| 89 | vectors_target, | ||
| 90 | lang_target, | ||
| 91 | ) | ||
| 92 | |||
| 93 | import random | ||
| 94 | take = args.instances | ||
| 95 | |||
| 96 | common_keys = set(keys_source).intersection(set(keys_target)) # definitions that fit the above requirements | ||
| 97 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 98 | experiment_keys = random.sample(common_keys, take) | ||
| 99 | |||
| 100 | instances = len(experiment_keys) | ||
| 101 | |||
| 102 | clean_corpus_source = list(clean_corpus_source[experiment_keys]) | ||
| 103 | clean_corpus_target = list(clean_corpus_target[experiment_keys]) | ||
| 104 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_corpus_source)}, {len(clean_corpus_target)}') | ||
| 105 | |||
| 106 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 107 | |||
| 108 | from sklearn.feature_extraction.text import CountVectorizer | ||
| 109 | from sklearn.feature_extraction.text import TfidfVectorizer | ||
| 110 | |||
| 111 | vocab_counter = CountVectorizer().fit(clean_corpus_source + clean_corpus_target) | ||
| 112 | common = [w for w in vocab_counter.get_feature_names() if w in clean_vectors_source or w in clean_vectors_target] | ||
| 113 | |||
| 114 | W_common = [] | ||
| 115 | for w in common: | ||
| 116 | if w in clean_vectors_source: | ||
| 117 | W_common.append(np.array(clean_vectors_source[w])) | ||
| 118 | else: | ||
| 119 | W_common.append(np.array(clean_vectors_target[w])) | ||
| 120 | |||
| 121 | print('The vocabulary size is %d' % (len(W_common))) | ||
| 122 | |||
| 123 | from sklearn.preprocessing import normalize | ||
| 124 | W_common = np.array(W_common) | ||
| 125 | W_common = normalize(W_common) # default is l2 | ||
| 126 | |||
| 127 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2') | ||
| 128 | vect_tfidf.fit(clean_corpus_source + clean_corpus_target) | ||
| 129 | X_idf_source = vect_tfidf.transform(clean_corpus_source) | ||
| 130 | X_idf_target = vect_tfidf.transform(clean_corpus_target) | ||
| 131 | |||
| 132 | print(f'Matrices are {X_idf_source.shape} and {W_common.shape}') | ||
| 133 | print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}') | ||
| 134 | |||
| 135 | X_idf_source_array = X_idf_source.toarray() | ||
| 136 | X_idf_target_array = X_idf_target.toarray() | ||
| 137 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
| 138 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
| 139 | |||
| 140 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
| 141 | |||
| 142 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
| 143 | |||
| 144 | hit_at_one = len([x for x,y in enumerate(cost_matrix.argmax(axis=1)) if x == y]) | ||
| 145 | |||
| 146 | import csv | ||
| 147 | percentage = hit_at_one / instances * 100 | ||
| 148 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_at_one}', f'{percentage}'] | ||
| 149 | with open('/home/syigit/multilang_results/sentence_emb_retrieval_axis_1.csv', 'a') as f: | ||
| 150 | writer = csv.writer(f) | ||
| 151 | writer.writerow(fields) | ||
diff --git a/sentence_embedding.py b/sentence_embedding.py new file mode 100644 index 0000000..0cd5361 --- /dev/null +++ b/sentence_embedding.py | |||
| @@ -0,0 +1,179 @@ | |||
| 1 | import argparse | ||
| 2 | import csv | ||
| 3 | import random | ||
| 4 | |||
| 5 | import numpy as np | ||
| 6 | from lapjv import lapjv | ||
| 7 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
| 8 | from sklearn.preprocessing import normalize | ||
| 9 | |||
| 10 | from Wasserstein_Distance import load_embeddings, process_corpus | ||
| 11 | |||
| 12 | |||
| 13 | def main(args): | ||
| 14 | |||
| 15 | run_method = list() | ||
| 16 | |||
| 17 | if input_paradigm == "all": | ||
| 18 | run_paradigm.extend("matching", "retrieval") | ||
| 19 | else: | ||
| 20 | run_paradigm.append(input_paradigm) | ||
| 21 | |||
| 22 | source_lang = args.source_lang | ||
| 23 | target_lang = args.target_lang | ||
| 24 | batch = args.batch | ||
| 25 | |||
| 26 | source_vectors_filename = args.source_vector | ||
| 27 | target_vectors_filename = args.target_vector | ||
| 28 | |||
| 29 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 30 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 31 | |||
| 32 | source_defs_filename = args.source_defs | ||
| 33 | target_defs_filename = args.target_defs | ||
| 34 | defs_source = [ | ||
| 35 | line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") | ||
| 36 | ] | ||
| 37 | defs_target = [ | ||
| 38 | line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") | ||
| 39 | ] | ||
| 40 | |||
| 41 | clean_source_corpus, clean_source_vectors, source_keys = process_corpus( | ||
| 42 | set(vectors_source.keys()), defs_source, vectors_source, source_lang | ||
| 43 | ) | ||
| 44 | |||
| 45 | clean_target_corpus, clean_target_vectors, target_keys = process_corpus( | ||
| 46 | set(vectors_target.keys()), defs_target, vectors_target, target_lang | ||
| 47 | ) | ||
| 48 | |||
| 49 | take = args.instances | ||
| 50 | common_keys = set(source_keys).intersection(set(target_keys)) | ||
| 51 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 52 | experiment_keys = random.sample(common_keys, take) | ||
| 53 | |||
| 54 | instances = len(experiment_keys) | ||
| 55 | |||
| 56 | clean_source_corpus = list(clean_source_corpus[experiment_keys]) | ||
| 57 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
| 58 | |||
| 59 | if not batch: | ||
| 60 | print( | ||
| 61 | f"{source_lang} - {target_lang} " | ||
| 62 | + f" document sizes: {len(clean_source_corpus)}, {len(clean_target_corpus)}" | ||
| 63 | ) | ||
| 64 | |||
| 65 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 66 | |||
| 67 | vocab_counter = CountVectorizer().fit(clean_source_corpus + clean_target_corpus) | ||
| 68 | common = [ | ||
| 69 | w | ||
| 70 | for w in vocab_counter.get_feature_names() | ||
| 71 | if w in clean_source_vectors or w in clean_target_vectors | ||
| 72 | ] | ||
| 73 | W_common = [] | ||
| 74 | |||
| 75 | for w in common: | ||
| 76 | if w in clean_source_vectors: | ||
| 77 | W_common.append(np.array(clean_source_vectors[w])) | ||
| 78 | else: | ||
| 79 | W_common.append(np.array(clean_target_vectors[w])) | ||
| 80 | |||
| 81 | W_common = np.array(W_common) | ||
| 82 | W_common = normalize(W_common) # default is l2 | ||
| 83 | |||
| 84 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm="l2") | ||
| 85 | vect_tfidf.fit(clean_source_corpus + clean_target_corpus) | ||
| 86 | X_idf_source = vect_tfidf.transform(clean_source_corpus) | ||
| 87 | X_idf_target = vect_tfidf.transform(clean_target_corpus) | ||
| 88 | |||
| 89 | X_idf_source_array = X_idf_source.toarray() | ||
| 90 | X_idf_target_array = X_idf_target.toarray() | ||
| 91 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
| 92 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
| 93 | |||
| 94 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
| 95 | |||
| 96 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
| 97 | |||
| 98 | for paradigm in run_paradigm: | ||
| 99 | if paradigm == 'matching': | ||
| 100 | |||
| 101 | cost_matrix = cost_matrix * -1000 | ||
| 102 | row_ind, col_ind, a = lapjv(cost_matrix, verbose=False) | ||
| 103 | |||
| 104 | result = zip(row_ind, col_ind) | ||
| 105 | hit_at_one = len([x for x, y in result if x == y]) | ||
| 106 | percentage = hit_at_one / instances * 100 | ||
| 107 | |||
| 108 | if not batch: | ||
| 109 | print(f"{hit_at_one} definitions have been matched correctly") | ||
| 110 | |||
| 111 | if batch: | ||
| 112 | fields = [ | ||
| 113 | f"{source_lang}", | ||
| 114 | f"{target_lang}", | ||
| 115 | f"{instances}", | ||
| 116 | f"{hit_at_one}", | ||
| 117 | f"{percentage}", | ||
| 118 | ] | ||
| 119 | |||
| 120 | with open("semb_matcing_results.csv", "a") as f: | ||
| 121 | writer = csv.writer(f) | ||
| 122 | writer.writerow(fields) | ||
| 123 | |||
| 124 | if paradigm == 'retrieval': | ||
| 125 | |||
| 126 | hit_at_one = len([x for x, y in enumerate(cost_matrix.argmax(axis=1)) if x == y]) | ||
| 127 | percentage = hit_at_one / instances * 100 | ||
| 128 | |||
| 129 | if not batch: | ||
| 130 | print(f"{hit_at_one} definitions have retrieved correctly") | ||
| 131 | |||
| 132 | if batch: | ||
| 133 | fields = [ | ||
| 134 | f"{source_lang}", | ||
| 135 | f"{target_lang}", | ||
| 136 | f"{instances}", | ||
| 137 | f"{hit_at_one}", | ||
| 138 | f"{percentage}", | ||
| 139 | ] | ||
| 140 | |||
| 141 | with open("semb_retrieval_results.csv", "a") as f: | ||
| 142 | writer = csv.writer(f) | ||
| 143 | writer.writerow(fields) | ||
| 144 | |||
| 145 | |||
| 146 | if __name__ == "__main__": | ||
| 147 | |||
| 148 | parser = argparse.ArgumentParser( | ||
| 149 | description="align dictionaries using sentence embedding representation" | ||
| 150 | ) | ||
| 151 | parser.add_argument("source_lang", help="source language short name") | ||
| 152 | parser.add_argument("target_lang", help="target language short name") | ||
| 153 | parser.add_argument("source_vector", help="path of the source vector") | ||
| 154 | parser.add_argument("target_vector", help="path of the target vector") | ||
| 155 | parser.add_argument("source_defs", help="path of the source definitions") | ||
| 156 | parser.add_argument("target_defs", help="path of the target definitions") | ||
| 157 | parser.add_argument( | ||
| 158 | "-n", | ||
| 159 | "--instances", | ||
| 160 | help="number of instances in each language to retrieve", | ||
| 161 | default=1000, | ||
| 162 | type=int, | ||
| 163 | ) | ||
| 164 | parser.add_argument( | ||
| 165 | "-b", | ||
| 166 | "--batch", | ||
| 167 | action="store_true", | ||
| 168 | help="running in batch (store results in csv) or" | ||
| 169 | + "running a single instance (output the results)", | ||
| 170 | ) | ||
| 171 | parser.add_argument( | ||
| 172 | "paradigm", | ||
| 173 | choices=["all", "retrieval", "matching"], | ||
| 174 | default="all", | ||
| 175 | help="which paradigms to align with", | ||
| 176 | ) | ||
| 177 | |||
| 178 | args = parser.parse_args() | ||
| 179 | main(args) | ||
