diff options
author | Yigit Sever | 2019-09-25 16:09:33 +0300 |
---|---|---|
committer | Yigit Sever | 2019-09-25 16:09:33 +0300 |
commit | 2226f211247be783846073b99d70b673b7cfa592 (patch) | |
tree | d125c18b19042cd3e3c5edb95106e0cc6eca8977 | |
parent | c74318070ad85d5d7943e96d343aa961db305316 (diff) | |
download | Evaluating-Dictionary-Alignment-2226f211247be783846073b99d70b673b7cfa592.tar.gz Evaluating-Dictionary-Alignment-2226f211247be783846073b99d70b673b7cfa592.tar.bz2 Evaluating-Dictionary-Alignment-2226f211247be783846073b99d70b673b7cfa592.zip |
Clean up sentence embeddings
-rw-r--r-- | sentence_emb_matching.py | 153 | ||||
-rw-r--r-- | sentence_emb_retrieval.py | 151 | ||||
-rw-r--r-- | sentence_embedding.py | 179 |
3 files changed, 179 insertions, 304 deletions
diff --git a/sentence_emb_matching.py b/sentence_emb_matching.py deleted file mode 100644 index 38812d7..0000000 --- a/sentence_emb_matching.py +++ /dev/null | |||
@@ -1,153 +0,0 @@ | |||
1 | import argparse | ||
2 | |||
3 | parser = argparse.ArgumentParser(description='run matching using sentence embeddings and cosine similarity') | ||
4 | parser.add_argument('source_lang', help='source language short name') | ||
5 | parser.add_argument('target_lang', help='target language short name') | ||
6 | parser.add_argument('source_vector', help='path of the source vector') | ||
7 | parser.add_argument('target_vector', help='path of the target vector') | ||
8 | parser.add_argument('source_defs', help='path of the source definitions') | ||
9 | parser.add_argument('target_defs', help='path of the target definitions') | ||
10 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
11 | |||
12 | args = parser.parse_args() | ||
13 | |||
14 | source_lang = args.source_lang | ||
15 | target_lang = args.target_lang | ||
16 | |||
17 | def load_embeddings(path, dimension = 300): | ||
18 | """ | ||
19 | Loads the embeddings from a word2vec formatted file. | ||
20 | The first line may or may not include the word count and dimension | ||
21 | """ | ||
22 | vectors = {} | ||
23 | with open(path, mode='r', encoding='utf8') as fp: | ||
24 | first_line = fp.readline().rstrip('\n') | ||
25 | if first_line.count(' ') == 1: # includes the "word_count dimension" information | ||
26 | (word_count, dimension) = map(int, first_line.split()) | ||
27 | else: # assume the file only contains vectors | ||
28 | fp.seek(0) | ||
29 | for line in fp: | ||
30 | elems = line.split() | ||
31 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
32 | return vectors | ||
33 | |||
34 | source_vectors_filename = args.source_vector | ||
35 | target_vectors_filename = args.target_vector | ||
36 | vectors_source = load_embeddings(source_vectors_filename) | ||
37 | vectors_target = load_embeddings(target_vectors_filename) | ||
38 | |||
39 | source_defs_filename = args.source_defs | ||
40 | target_defs_filename = args.target_defs | ||
41 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | ||
42 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
43 | |||
44 | import numpy as np | ||
45 | from mosestokenizer import * | ||
46 | |||
47 | def clean_corpus_using_embeddings_vocabulary( | ||
48 | embeddings_dictionary, | ||
49 | corpus, | ||
50 | vectors, | ||
51 | language, | ||
52 | ): | ||
53 | ''' | ||
54 | Cleans corpus using the dictionary of embeddings. | ||
55 | Any word without an associated embedding in the dictionary is ignored. | ||
56 | ''' | ||
57 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
58 | words_we_want = set(embeddings_dictionary) | ||
59 | tokenize = MosesTokenizer(language) | ||
60 | for key, doc in enumerate(corpus): | ||
61 | clean_doc = [] | ||
62 | words = tokenize(doc) | ||
63 | for word in words: | ||
64 | if word in words_we_want: | ||
65 | clean_doc.append(word) | ||
66 | clean_vectors[word] = np.array(vectors[word].split()).astype(np.float) | ||
67 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
68 | keys.append(key) | ||
69 | clean_corpus.append(' '.join(clean_doc)) | ||
70 | tokenize.close() | ||
71 | return np.array(clean_corpus), clean_vectors, keys | ||
72 | |||
73 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
74 | set(vectors_source.keys()), | ||
75 | defs_source, | ||
76 | vectors_source, | ||
77 | source_lang, | ||
78 | ) | ||
79 | |||
80 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
81 | set(vectors_target.keys()), | ||
82 | defs_target, | ||
83 | vectors_target, | ||
84 | target_lang, | ||
85 | ) | ||
86 | |||
87 | import random | ||
88 | take = args.instances | ||
89 | |||
90 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
91 | take = min(len(common_keys), take) # you can't sample more than length | ||
92 | experiment_keys = random.sample(common_keys, take) | ||
93 | |||
94 | instances = len(experiment_keys) | ||
95 | |||
96 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
97 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
98 | |||
99 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | ||
100 | |||
101 | del vectors_source, vectors_target, defs_source, defs_target | ||
102 | |||
103 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
104 | |||
105 | vocab_counter = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
106 | common = [w for w in vocab_counter.get_feature_names() if w in clean_src_vectors or w in clean_target_vectors] | ||
107 | W_common = [] | ||
108 | |||
109 | for w in common: | ||
110 | if w in clean_src_vectors: | ||
111 | W_common.append(np.array(clean_src_vectors[w])) | ||
112 | else: | ||
113 | W_common.append(np.array(clean_target_vectors[w])) | ||
114 | |||
115 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | ||
116 | |||
117 | from sklearn.preprocessing import normalize | ||
118 | W_common = np.array(W_common) | ||
119 | W_common = normalize(W_common) # default is l2 | ||
120 | |||
121 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2') | ||
122 | vect_tfidf.fit(clean_src_corpus + clean_target_corpus) | ||
123 | X_idf_source = vect_tfidf.transform(clean_src_corpus) | ||
124 | X_idf_target = vect_tfidf.transform(clean_target_corpus) | ||
125 | |||
126 | print(f'Matrices are {X_idf_source.shape} and {W_common.shape}') | ||
127 | print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}') | ||
128 | |||
129 | X_idf_source_array = X_idf_source.toarray() | ||
130 | X_idf_target_array = X_idf_target.toarray() | ||
131 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
132 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
133 | |||
134 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
135 | |||
136 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
137 | |||
138 | from lapjv import lapjv | ||
139 | cost_matrix = cost_matrix * -1000 | ||
140 | row_ind, col_ind, a = lapjv(cost_matrix, verbose=False) | ||
141 | |||
142 | result = zip(row_ind, col_ind) | ||
143 | hit_one = len([x for x,y in result if x == y]) | ||
144 | print(f'{hit_one} definitions have been mapped correctly, shape of cost matrix: {str(cost_matrix.shape)}') | ||
145 | |||
146 | import csv | ||
147 | percentage = hit_one / instances * 100 | ||
148 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | ||
149 | |||
150 | with open('semb_matcing.csv', 'a') as f: | ||
151 | writer = csv.writer(f) | ||
152 | writer.writerow(fields) | ||
153 | |||
diff --git a/sentence_emb_retrieval.py b/sentence_emb_retrieval.py deleted file mode 100644 index 63ebcdc..0000000 --- a/sentence_emb_retrieval.py +++ /dev/null | |||
@@ -1,151 +0,0 @@ | |||
1 | import argparse | ||
2 | |||
3 | parser = argparse.ArgumentParser(description='Run Retrieval using Sentence Embedding + Cosine') | ||
4 | parser.add_argument('source_lang', help='source language short name') | ||
5 | parser.add_argument('target_lang', help='target language short name') | ||
6 | parser.add_argument('source_vector', help='path of the source vector') | ||
7 | parser.add_argument('target_vector', help='path of the target vector') | ||
8 | parser.add_argument('source_defs', help='path of the source definitions') | ||
9 | parser.add_argument('target_defs', help='path of the target definitions') | ||
10 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int) | ||
11 | args = parser.parse_args() | ||
12 | |||
13 | source_lang = args.source_lang | ||
14 | target_lang = args.target_lang | ||
15 | |||
16 | def load_embeddings(path, dimension = 300): | ||
17 | """ | ||
18 | Loads the embeddings from a word2vec formatted file. | ||
19 | The first line may or may not include the word count and dimension | ||
20 | """ | ||
21 | vectors = {} | ||
22 | with open(path, mode='r', encoding='utf8') as fp: | ||
23 | first_line = fp.readline().rstrip('\n') | ||
24 | if first_line.count(' ') == 1: # includes the "word_count dimension" information | ||
25 | (word_count, dimension) = map(int, first_line.split()) | ||
26 | else: # assume the file only contains vectors | ||
27 | fp.seek(0) | ||
28 | for line in fp: | ||
29 | elems = line.split() | ||
30 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
31 | return vectors | ||
32 | |||
33 | lang_source = args.source_lang | ||
34 | lang_target = args.target_lang | ||
35 | |||
36 | vectors_filename_source = args.source_vector | ||
37 | vectors_filename_target = args.target_vector | ||
38 | |||
39 | vectors_source = load_embeddings(vectors_filename_source) | ||
40 | vectors_target = load_embeddings(vectors_filename_target) | ||
41 | |||
42 | defs_filename_source = args.source_defs | ||
43 | defs_filename_target = args.target_defs | ||
44 | defs_source = [line.rstrip('\n') for line in open(defs_filename_source, encoding='utf8')] | ||
45 | defs_target = [line.rstrip('\n') for line in open(defs_filename_target, encoding='utf8')] | ||
46 | |||
47 | print('Read {} {} documents and {} {} documents'.format(len(defs_source), lang_source, len(defs_target), lang_target)) | ||
48 | |||
49 | import numpy as np | ||
50 | from mosestokenizer import * | ||
51 | |||
52 | def clean_corpus_using_embeddings_vocabulary( | ||
53 | embeddings_dictionary, | ||
54 | corpus, | ||
55 | vectors, | ||
56 | language, | ||
57 | ): | ||
58 | ''' | ||
59 | Cleans corpus using the dictionary of embeddings. | ||
60 | Any word without an associated embedding in the dictionary is ignored. | ||
61 | Adds '__target-language' and '__source-language' at the end of the words according to their language. | ||
62 | ''' | ||
63 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
64 | words_we_want = set(embeddings_dictionary) | ||
65 | tokenize = MosesTokenizer(language) | ||
66 | for key, doc in enumerate(corpus): | ||
67 | clean_doc = [] | ||
68 | words = tokenize(doc) | ||
69 | for word in words: | ||
70 | if word in words_we_want: | ||
71 | clean_doc.append(word + '__%s' % language) | ||
72 | clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float) | ||
73 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
74 | keys.append(key) | ||
75 | clean_corpus.append(' '.join(clean_doc)) | ||
76 | tokenize.close() | ||
77 | return np.array(clean_corpus), clean_vectors, keys | ||
78 | |||
79 | clean_corpus_source, clean_vectors_source, keys_source = clean_corpus_using_embeddings_vocabulary( | ||
80 | set(vectors_source.keys()), | ||
81 | defs_source, | ||
82 | vectors_source, | ||
83 | lang_source, | ||
84 | ) | ||
85 | |||
86 | clean_corpus_target, clean_vectors_target, keys_target = clean_corpus_using_embeddings_vocabulary( | ||
87 | set(vectors_target.keys()), | ||
88 | defs_target, | ||
89 | vectors_target, | ||
90 | lang_target, | ||
91 | ) | ||
92 | |||
93 | import random | ||
94 | take = args.instances | ||
95 | |||
96 | common_keys = set(keys_source).intersection(set(keys_target)) # definitions that fit the above requirements | ||
97 | take = min(len(common_keys), take) # you can't sample more than length | ||
98 | experiment_keys = random.sample(common_keys, take) | ||
99 | |||
100 | instances = len(experiment_keys) | ||
101 | |||
102 | clean_corpus_source = list(clean_corpus_source[experiment_keys]) | ||
103 | clean_corpus_target = list(clean_corpus_target[experiment_keys]) | ||
104 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_corpus_source)}, {len(clean_corpus_target)}') | ||
105 | |||
106 | del vectors_source, vectors_target, defs_source, defs_target | ||
107 | |||
108 | from sklearn.feature_extraction.text import CountVectorizer | ||
109 | from sklearn.feature_extraction.text import TfidfVectorizer | ||
110 | |||
111 | vocab_counter = CountVectorizer().fit(clean_corpus_source + clean_corpus_target) | ||
112 | common = [w for w in vocab_counter.get_feature_names() if w in clean_vectors_source or w in clean_vectors_target] | ||
113 | |||
114 | W_common = [] | ||
115 | for w in common: | ||
116 | if w in clean_vectors_source: | ||
117 | W_common.append(np.array(clean_vectors_source[w])) | ||
118 | else: | ||
119 | W_common.append(np.array(clean_vectors_target[w])) | ||
120 | |||
121 | print('The vocabulary size is %d' % (len(W_common))) | ||
122 | |||
123 | from sklearn.preprocessing import normalize | ||
124 | W_common = np.array(W_common) | ||
125 | W_common = normalize(W_common) # default is l2 | ||
126 | |||
127 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2') | ||
128 | vect_tfidf.fit(clean_corpus_source + clean_corpus_target) | ||
129 | X_idf_source = vect_tfidf.transform(clean_corpus_source) | ||
130 | X_idf_target = vect_tfidf.transform(clean_corpus_target) | ||
131 | |||
132 | print(f'Matrices are {X_idf_source.shape} and {W_common.shape}') | ||
133 | print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}') | ||
134 | |||
135 | X_idf_source_array = X_idf_source.toarray() | ||
136 | X_idf_target_array = X_idf_target.toarray() | ||
137 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
138 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
139 | |||
140 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
141 | |||
142 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
143 | |||
144 | hit_at_one = len([x for x,y in enumerate(cost_matrix.argmax(axis=1)) if x == y]) | ||
145 | |||
146 | import csv | ||
147 | percentage = hit_at_one / instances * 100 | ||
148 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_at_one}', f'{percentage}'] | ||
149 | with open('/home/syigit/multilang_results/sentence_emb_retrieval_axis_1.csv', 'a') as f: | ||
150 | writer = csv.writer(f) | ||
151 | writer.writerow(fields) | ||
diff --git a/sentence_embedding.py b/sentence_embedding.py new file mode 100644 index 0000000..0cd5361 --- /dev/null +++ b/sentence_embedding.py | |||
@@ -0,0 +1,179 @@ | |||
1 | import argparse | ||
2 | import csv | ||
3 | import random | ||
4 | |||
5 | import numpy as np | ||
6 | from lapjv import lapjv | ||
7 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
8 | from sklearn.preprocessing import normalize | ||
9 | |||
10 | from Wasserstein_Distance import load_embeddings, process_corpus | ||
11 | |||
12 | |||
13 | def main(args): | ||
14 | |||
15 | run_method = list() | ||
16 | |||
17 | if input_paradigm == "all": | ||
18 | run_paradigm.extend("matching", "retrieval") | ||
19 | else: | ||
20 | run_paradigm.append(input_paradigm) | ||
21 | |||
22 | source_lang = args.source_lang | ||
23 | target_lang = args.target_lang | ||
24 | batch = args.batch | ||
25 | |||
26 | source_vectors_filename = args.source_vector | ||
27 | target_vectors_filename = args.target_vector | ||
28 | |||
29 | vectors_source = load_embeddings(source_vectors_filename) | ||
30 | vectors_target = load_embeddings(target_vectors_filename) | ||
31 | |||
32 | source_defs_filename = args.source_defs | ||
33 | target_defs_filename = args.target_defs | ||
34 | defs_source = [ | ||
35 | line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") | ||
36 | ] | ||
37 | defs_target = [ | ||
38 | line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") | ||
39 | ] | ||
40 | |||
41 | clean_source_corpus, clean_source_vectors, source_keys = process_corpus( | ||
42 | set(vectors_source.keys()), defs_source, vectors_source, source_lang | ||
43 | ) | ||
44 | |||
45 | clean_target_corpus, clean_target_vectors, target_keys = process_corpus( | ||
46 | set(vectors_target.keys()), defs_target, vectors_target, target_lang | ||
47 | ) | ||
48 | |||
49 | take = args.instances | ||
50 | common_keys = set(source_keys).intersection(set(target_keys)) | ||
51 | take = min(len(common_keys), take) # you can't sample more than length | ||
52 | experiment_keys = random.sample(common_keys, take) | ||
53 | |||
54 | instances = len(experiment_keys) | ||
55 | |||
56 | clean_source_corpus = list(clean_source_corpus[experiment_keys]) | ||
57 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
58 | |||
59 | if not batch: | ||
60 | print( | ||
61 | f"{source_lang} - {target_lang} " | ||
62 | + f" document sizes: {len(clean_source_corpus)}, {len(clean_target_corpus)}" | ||
63 | ) | ||
64 | |||
65 | del vectors_source, vectors_target, defs_source, defs_target | ||
66 | |||
67 | vocab_counter = CountVectorizer().fit(clean_source_corpus + clean_target_corpus) | ||
68 | common = [ | ||
69 | w | ||
70 | for w in vocab_counter.get_feature_names() | ||
71 | if w in clean_source_vectors or w in clean_target_vectors | ||
72 | ] | ||
73 | W_common = [] | ||
74 | |||
75 | for w in common: | ||
76 | if w in clean_source_vectors: | ||
77 | W_common.append(np.array(clean_source_vectors[w])) | ||
78 | else: | ||
79 | W_common.append(np.array(clean_target_vectors[w])) | ||
80 | |||
81 | W_common = np.array(W_common) | ||
82 | W_common = normalize(W_common) # default is l2 | ||
83 | |||
84 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm="l2") | ||
85 | vect_tfidf.fit(clean_source_corpus + clean_target_corpus) | ||
86 | X_idf_source = vect_tfidf.transform(clean_source_corpus) | ||
87 | X_idf_target = vect_tfidf.transform(clean_target_corpus) | ||
88 | |||
89 | X_idf_source_array = X_idf_source.toarray() | ||
90 | X_idf_target_array = X_idf_target.toarray() | ||
91 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
92 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
93 | |||
94 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
95 | |||
96 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
97 | |||
98 | for paradigm in run_paradigm: | ||
99 | if paradigm == 'matching': | ||
100 | |||
101 | cost_matrix = cost_matrix * -1000 | ||
102 | row_ind, col_ind, a = lapjv(cost_matrix, verbose=False) | ||
103 | |||
104 | result = zip(row_ind, col_ind) | ||
105 | hit_at_one = len([x for x, y in result if x == y]) | ||
106 | percentage = hit_at_one / instances * 100 | ||
107 | |||
108 | if not batch: | ||
109 | print(f"{hit_at_one} definitions have been matched correctly") | ||
110 | |||
111 | if batch: | ||
112 | fields = [ | ||
113 | f"{source_lang}", | ||
114 | f"{target_lang}", | ||
115 | f"{instances}", | ||
116 | f"{hit_at_one}", | ||
117 | f"{percentage}", | ||
118 | ] | ||
119 | |||
120 | with open("semb_matcing_results.csv", "a") as f: | ||
121 | writer = csv.writer(f) | ||
122 | writer.writerow(fields) | ||
123 | |||
124 | if paradigm == 'retrieval': | ||
125 | |||
126 | hit_at_one = len([x for x, y in enumerate(cost_matrix.argmax(axis=1)) if x == y]) | ||
127 | percentage = hit_at_one / instances * 100 | ||
128 | |||
129 | if not batch: | ||
130 | print(f"{hit_at_one} definitions have retrieved correctly") | ||
131 | |||
132 | if batch: | ||
133 | fields = [ | ||
134 | f"{source_lang}", | ||
135 | f"{target_lang}", | ||
136 | f"{instances}", | ||
137 | f"{hit_at_one}", | ||
138 | f"{percentage}", | ||
139 | ] | ||
140 | |||
141 | with open("semb_retrieval_results.csv", "a") as f: | ||
142 | writer = csv.writer(f) | ||
143 | writer.writerow(fields) | ||
144 | |||
145 | |||
146 | if __name__ == "__main__": | ||
147 | |||
148 | parser = argparse.ArgumentParser( | ||
149 | description="align dictionaries using sentence embedding representation" | ||
150 | ) | ||
151 | parser.add_argument("source_lang", help="source language short name") | ||
152 | parser.add_argument("target_lang", help="target language short name") | ||
153 | parser.add_argument("source_vector", help="path of the source vector") | ||
154 | parser.add_argument("target_vector", help="path of the target vector") | ||
155 | parser.add_argument("source_defs", help="path of the source definitions") | ||
156 | parser.add_argument("target_defs", help="path of the target definitions") | ||
157 | parser.add_argument( | ||
158 | "-n", | ||
159 | "--instances", | ||
160 | help="number of instances in each language to retrieve", | ||
161 | default=1000, | ||
162 | type=int, | ||
163 | ) | ||
164 | parser.add_argument( | ||
165 | "-b", | ||
166 | "--batch", | ||
167 | action="store_true", | ||
168 | help="running in batch (store results in csv) or" | ||
169 | + "running a single instance (output the results)", | ||
170 | ) | ||
171 | parser.add_argument( | ||
172 | "paradigm", | ||
173 | choices=["all", "retrieval", "matching"], | ||
174 | default="all", | ||
175 | help="which paradigms to align with", | ||
176 | ) | ||
177 | |||
178 | args = parser.parse_args() | ||
179 | main(args) | ||