diff options
author | Yigit Sever | 2019-09-19 00:22:25 +0300 |
---|---|---|
committer | Yigit Sever | 2019-09-19 00:22:25 +0300 |
commit | 1890976ed1eee59eda92ceabdcb1c966d6707269 (patch) | |
tree | f7bb7de36d158ee970aaf4f0f5a6b682ac359825 /sentence_emb_retrieval.py | |
parent | 68b6c55d0e3217362d6e17ea8458dfa7e5242e17 (diff) | |
download | Evaluating-Dictionary-Alignment-1890976ed1eee59eda92ceabdcb1c966d6707269.tar.gz Evaluating-Dictionary-Alignment-1890976ed1eee59eda92ceabdcb1c966d6707269.tar.bz2 Evaluating-Dictionary-Alignment-1890976ed1eee59eda92ceabdcb1c966d6707269.zip |
Add experiment scripts
Diffstat (limited to 'sentence_emb_retrieval.py')
-rw-r--r-- | sentence_emb_retrieval.py | 151 |
1 files changed, 151 insertions, 0 deletions
diff --git a/sentence_emb_retrieval.py b/sentence_emb_retrieval.py new file mode 100644 index 0000000..63ebcdc --- /dev/null +++ b/sentence_emb_retrieval.py | |||
@@ -0,0 +1,151 @@ | |||
1 | import argparse | ||
2 | |||
3 | parser = argparse.ArgumentParser(description='Run Retrieval using Sentence Embedding + Cosine') | ||
4 | parser.add_argument('source_lang', help='source language short name') | ||
5 | parser.add_argument('target_lang', help='target language short name') | ||
6 | parser.add_argument('source_vector', help='path of the source vector') | ||
7 | parser.add_argument('target_vector', help='path of the target vector') | ||
8 | parser.add_argument('source_defs', help='path of the source definitions') | ||
9 | parser.add_argument('target_defs', help='path of the target definitions') | ||
10 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int) | ||
11 | args = parser.parse_args() | ||
12 | |||
13 | source_lang = args.source_lang | ||
14 | target_lang = args.target_lang | ||
15 | |||
16 | def load_embeddings(path, dimension = 300): | ||
17 | """ | ||
18 | Loads the embeddings from a word2vec formatted file. | ||
19 | The first line may or may not include the word count and dimension | ||
20 | """ | ||
21 | vectors = {} | ||
22 | with open(path, mode='r', encoding='utf8') as fp: | ||
23 | first_line = fp.readline().rstrip('\n') | ||
24 | if first_line.count(' ') == 1: # includes the "word_count dimension" information | ||
25 | (word_count, dimension) = map(int, first_line.split()) | ||
26 | else: # assume the file only contains vectors | ||
27 | fp.seek(0) | ||
28 | for line in fp: | ||
29 | elems = line.split() | ||
30 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
31 | return vectors | ||
32 | |||
33 | lang_source = args.source_lang | ||
34 | lang_target = args.target_lang | ||
35 | |||
36 | vectors_filename_source = args.source_vector | ||
37 | vectors_filename_target = args.target_vector | ||
38 | |||
39 | vectors_source = load_embeddings(vectors_filename_source) | ||
40 | vectors_target = load_embeddings(vectors_filename_target) | ||
41 | |||
42 | defs_filename_source = args.source_defs | ||
43 | defs_filename_target = args.target_defs | ||
44 | defs_source = [line.rstrip('\n') for line in open(defs_filename_source, encoding='utf8')] | ||
45 | defs_target = [line.rstrip('\n') for line in open(defs_filename_target, encoding='utf8')] | ||
46 | |||
47 | print('Read {} {} documents and {} {} documents'.format(len(defs_source), lang_source, len(defs_target), lang_target)) | ||
48 | |||
49 | import numpy as np | ||
50 | from mosestokenizer import * | ||
51 | |||
52 | def clean_corpus_using_embeddings_vocabulary( | ||
53 | embeddings_dictionary, | ||
54 | corpus, | ||
55 | vectors, | ||
56 | language, | ||
57 | ): | ||
58 | ''' | ||
59 | Cleans corpus using the dictionary of embeddings. | ||
60 | Any word without an associated embedding in the dictionary is ignored. | ||
61 | Adds '__target-language' and '__source-language' at the end of the words according to their language. | ||
62 | ''' | ||
63 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
64 | words_we_want = set(embeddings_dictionary) | ||
65 | tokenize = MosesTokenizer(language) | ||
66 | for key, doc in enumerate(corpus): | ||
67 | clean_doc = [] | ||
68 | words = tokenize(doc) | ||
69 | for word in words: | ||
70 | if word in words_we_want: | ||
71 | clean_doc.append(word + '__%s' % language) | ||
72 | clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float) | ||
73 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
74 | keys.append(key) | ||
75 | clean_corpus.append(' '.join(clean_doc)) | ||
76 | tokenize.close() | ||
77 | return np.array(clean_corpus), clean_vectors, keys | ||
78 | |||
79 | clean_corpus_source, clean_vectors_source, keys_source = clean_corpus_using_embeddings_vocabulary( | ||
80 | set(vectors_source.keys()), | ||
81 | defs_source, | ||
82 | vectors_source, | ||
83 | lang_source, | ||
84 | ) | ||
85 | |||
86 | clean_corpus_target, clean_vectors_target, keys_target = clean_corpus_using_embeddings_vocabulary( | ||
87 | set(vectors_target.keys()), | ||
88 | defs_target, | ||
89 | vectors_target, | ||
90 | lang_target, | ||
91 | ) | ||
92 | |||
93 | import random | ||
94 | take = args.instances | ||
95 | |||
96 | common_keys = set(keys_source).intersection(set(keys_target)) # definitions that fit the above requirements | ||
97 | take = min(len(common_keys), take) # you can't sample more than length | ||
98 | experiment_keys = random.sample(common_keys, take) | ||
99 | |||
100 | instances = len(experiment_keys) | ||
101 | |||
102 | clean_corpus_source = list(clean_corpus_source[experiment_keys]) | ||
103 | clean_corpus_target = list(clean_corpus_target[experiment_keys]) | ||
104 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_corpus_source)}, {len(clean_corpus_target)}') | ||
105 | |||
106 | del vectors_source, vectors_target, defs_source, defs_target | ||
107 | |||
108 | from sklearn.feature_extraction.text import CountVectorizer | ||
109 | from sklearn.feature_extraction.text import TfidfVectorizer | ||
110 | |||
111 | vocab_counter = CountVectorizer().fit(clean_corpus_source + clean_corpus_target) | ||
112 | common = [w for w in vocab_counter.get_feature_names() if w in clean_vectors_source or w in clean_vectors_target] | ||
113 | |||
114 | W_common = [] | ||
115 | for w in common: | ||
116 | if w in clean_vectors_source: | ||
117 | W_common.append(np.array(clean_vectors_source[w])) | ||
118 | else: | ||
119 | W_common.append(np.array(clean_vectors_target[w])) | ||
120 | |||
121 | print('The vocabulary size is %d' % (len(W_common))) | ||
122 | |||
123 | from sklearn.preprocessing import normalize | ||
124 | W_common = np.array(W_common) | ||
125 | W_common = normalize(W_common) # default is l2 | ||
126 | |||
127 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2') | ||
128 | vect_tfidf.fit(clean_corpus_source + clean_corpus_target) | ||
129 | X_idf_source = vect_tfidf.transform(clean_corpus_source) | ||
130 | X_idf_target = vect_tfidf.transform(clean_corpus_target) | ||
131 | |||
132 | print(f'Matrices are {X_idf_source.shape} and {W_common.shape}') | ||
133 | print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}') | ||
134 | |||
135 | X_idf_source_array = X_idf_source.toarray() | ||
136 | X_idf_target_array = X_idf_target.toarray() | ||
137 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
138 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
139 | |||
140 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
141 | |||
142 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
143 | |||
144 | hit_at_one = len([x for x,y in enumerate(cost_matrix.argmax(axis=1)) if x == y]) | ||
145 | |||
146 | import csv | ||
147 | percentage = hit_at_one / instances * 100 | ||
148 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_at_one}', f'{percentage}'] | ||
149 | with open('/home/syigit/multilang_results/sentence_emb_retrieval_axis_1.csv', 'a') as f: | ||
150 | writer = csv.writer(f) | ||
151 | writer.writerow(fields) | ||