diff options
| author | Yigit Sever | 2019-09-19 00:22:25 +0300 |
|---|---|---|
| committer | Yigit Sever | 2019-09-19 00:22:25 +0300 |
| commit | 1890976ed1eee59eda92ceabdcb1c966d6707269 (patch) | |
| tree | f7bb7de36d158ee970aaf4f0f5a6b682ac359825 | |
| parent | 68b6c55d0e3217362d6e17ea8458dfa7e5242e17 (diff) | |
| download | Evaluating-Dictionary-Alignment-1890976ed1eee59eda92ceabdcb1c966d6707269.tar.gz Evaluating-Dictionary-Alignment-1890976ed1eee59eda92ceabdcb1c966d6707269.tar.bz2 Evaluating-Dictionary-Alignment-1890976ed1eee59eda92ceabdcb1c966d6707269.zip | |
Add experiment scripts
| -rw-r--r-- | WMD_matching.py | 265 | ||||
| -rw-r--r-- | WMD_retrieval.py | 259 | ||||
| -rw-r--r-- | Wass_Matcher.py | 76 | ||||
| -rw-r--r-- | Wass_Retriever.py | 73 | ||||
| -rw-r--r-- | sentence_emb_matching.py | 153 | ||||
| -rw-r--r-- | sentence_emb_retrieval.py | 151 |
6 files changed, 977 insertions, 0 deletions
diff --git a/WMD_matching.py b/WMD_matching.py new file mode 100644 index 0000000..c65e6e5 --- /dev/null +++ b/WMD_matching.py | |||
| @@ -0,0 +1,265 @@ | |||
| 1 | ########################### | ||
| 2 | # Wasserstein Retrieval # | ||
| 3 | ########################### | ||
| 4 | import argparse | ||
| 5 | |||
| 6 | parser = argparse.ArgumentParser(description='run matching using wmd and wasserstein distances') | ||
| 7 | parser.add_argument('source_lang', help='source language short name') | ||
| 8 | parser.add_argument('target_lang', help='target language short name') | ||
| 9 | parser.add_argument('source_vector', help='path of the source vector') | ||
| 10 | parser.add_argument('target_vector', help='path of the target vector') | ||
| 11 | parser.add_argument('source_defs', help='path of the source definitions') | ||
| 12 | parser.add_argument('target_defs', help='path of the target definitions') | ||
| 13 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
| 14 | |||
| 15 | args = parser.parse_args() | ||
| 16 | |||
| 17 | source_lang = args.source_lang | ||
| 18 | target_lang = args.target_lang | ||
| 19 | |||
| 20 | def load_embeddings(path, dimension=300): | ||
| 21 | """ | ||
| 22 | Loads the embeddings from a word2vec formatted file. | ||
| 23 | word2vec format is one line per word and it's associated embedding | ||
| 24 | (dimension x floating numbers) separated by spaces | ||
| 25 | The first line may or may not include the word count and dimension | ||
| 26 | """ | ||
| 27 | vectors = {} | ||
| 28 | with open(path, mode='r', encoding='utf8') as fp: | ||
| 29 | first_line = fp.readline().rstrip('\n') | ||
| 30 | if first_line.count(' ') == 1: | ||
| 31 | # includes the "word_count dimension" information | ||
| 32 | (word_count, dimension) = map(int, first_line.split()) | ||
| 33 | else: | ||
| 34 | # assume the file only contains vectors | ||
| 35 | fp.seek(0) | ||
| 36 | for line in fp: | ||
| 37 | elems = line.split() | ||
| 38 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
| 39 | return vectors | ||
| 40 | |||
| 41 | ####################################################################### | ||
| 42 | # Vectors Load Here # | ||
| 43 | ####################################################################### | ||
| 44 | |||
| 45 | source_vectors_filename = args.source_vector | ||
| 46 | target_vectors_filename = args.target_vector | ||
| 47 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 48 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 49 | |||
| 50 | ####################################################################### | ||
| 51 | # Corpora Load Here # | ||
| 52 | ####################################################################### | ||
| 53 | |||
| 54 | source_defs_filename = args.source_defs | ||
| 55 | target_defs_filename = args.target_defs | ||
| 56 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | ||
| 57 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
| 58 | |||
| 59 | import numpy as np | ||
| 60 | from mosestokenizer import * | ||
| 61 | |||
| 62 | def clean_corpus_using_embeddings_vocabulary( | ||
| 63 | embeddings_dictionary, | ||
| 64 | corpus, | ||
| 65 | vectors, | ||
| 66 | language, | ||
| 67 | ): | ||
| 68 | ''' | ||
| 69 | Cleans corpus using the dictionary of embeddings. | ||
| 70 | Any word without an associated embedding in the dictionary is ignored. | ||
| 71 | Adds '__target-language' and '__source-language' at the end of the words according to their language. | ||
| 72 | ''' | ||
| 73 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
| 74 | words_we_want = set(embeddings_dictionary) | ||
| 75 | tokenize = MosesTokenizer(language) | ||
| 76 | for key, doc in enumerate(corpus): | ||
| 77 | clean_doc = [] | ||
| 78 | words = tokenize(doc) | ||
| 79 | for word in words: | ||
| 80 | if word in words_we_want: | ||
| 81 | clean_doc.append(word + '__%s' % language) | ||
| 82 | clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float) | ||
| 83 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
| 84 | keys.append(key) | ||
| 85 | clean_corpus.append(' '.join(clean_doc)) | ||
| 86 | tokenize.close() | ||
| 87 | return np.array(clean_corpus), clean_vectors, keys | ||
| 88 | |||
| 89 | import nltk | ||
| 90 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 91 | set(vectors_source.keys()), | ||
| 92 | defs_source, | ||
| 93 | vectors_source, | ||
| 94 | source_lang, | ||
| 95 | ) | ||
| 96 | |||
| 97 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 98 | set(vectors_target.keys()), | ||
| 99 | defs_target, | ||
| 100 | vectors_target, | ||
| 101 | target_lang, | ||
| 102 | ) | ||
| 103 | |||
| 104 | import random | ||
| 105 | take = args.instances | ||
| 106 | |||
| 107 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
| 108 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 109 | experiment_keys = random.sample(common_keys, take) | ||
| 110 | |||
| 111 | instances = len(experiment_keys) | ||
| 112 | |||
| 113 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
| 114 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
| 115 | |||
| 116 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | ||
| 117 | |||
| 118 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 119 | |||
| 120 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
| 121 | |||
| 122 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
| 123 | common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors] | ||
| 124 | W_common = [] | ||
| 125 | for w in common: | ||
| 126 | if w in clean_src_vectors: | ||
| 127 | W_common.append(np.array(clean_src_vectors[w])) | ||
| 128 | else: | ||
| 129 | W_common.append(np.array(clean_target_vectors[w])) | ||
| 130 | |||
| 131 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | ||
| 132 | |||
| 133 | from sklearn.preprocessing import normalize | ||
| 134 | W_common = np.array(W_common) | ||
| 135 | W_common = normalize(W_common) | ||
| 136 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) | ||
| 137 | vect.fit(clean_src_corpus + clean_target_corpus) | ||
| 138 | X_train_idf = vect.transform(clean_src_corpus) | ||
| 139 | X_test_idf = vect.transform(clean_target_corpus) | ||
| 140 | |||
| 141 | vect_tf = CountVectorizer(vocabulary=common, dtype=np.double) | ||
| 142 | vect_tf.fit(clean_src_corpus + clean_target_corpus) | ||
| 143 | X_train_tf = vect_tf.transform(clean_src_corpus) | ||
| 144 | X_test_tf = vect_tf.transform(clean_target_corpus) | ||
| 145 | |||
| 146 | import ot | ||
| 147 | from lapjv import lapjv | ||
| 148 | from sklearn.neighbors import KNeighborsClassifier | ||
| 149 | from sklearn.metrics import euclidean_distances | ||
| 150 | from sklearn.externals.joblib import Parallel, delayed | ||
| 151 | from sklearn.utils import check_array | ||
| 152 | from sklearn.metrics.scorer import check_scoring | ||
| 153 | from pathos.multiprocessing import ProcessingPool as Pool | ||
| 154 | from sklearn.metrics import euclidean_distances | ||
| 155 | |||
| 156 | class WassersteinDistances(KNeighborsClassifier): | ||
| 157 | """ | ||
| 158 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | ||
| 159 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | ||
| 160 | Wasserstein is parametrized by the distances between the individual points of the distributions. | ||
| 161 | In this work, we propose to use cross-lingual embeddings for calculating these distances. | ||
| 162 | |||
| 163 | """ | ||
| 164 | def __init__(self, W_embed, n_neighbors=1, n_jobs=1, verbose=False, sinkhorn= False, sinkhorn_reg=0.1): | ||
| 165 | """ | ||
| 166 | Initialization of the class. | ||
| 167 | Arguments | ||
| 168 | --------- | ||
| 169 | W_embed: embeddings of the words, np.array | ||
| 170 | verbose: True/False | ||
| 171 | """ | ||
| 172 | self.sinkhorn = sinkhorn | ||
| 173 | self.sinkhorn_reg = sinkhorn_reg | ||
| 174 | self.W_embed = W_embed | ||
| 175 | self.verbose = verbose | ||
| 176 | super(WassersteinDistances, self).__init__(n_neighbors=n_neighbors, n_jobs=n_jobs, metric='precomputed', algorithm='brute') | ||
| 177 | |||
| 178 | def _wmd(self, i, row, X_train): | ||
| 179 | union_idx = np.union1d(X_train[i].indices, row.indices) | ||
| 180 | W_minimal = self.W_embed[union_idx] | ||
| 181 | W_dist = euclidean_distances(W_minimal) | ||
| 182 | bow_i = X_train[i, union_idx].A.ravel() | ||
| 183 | bow_j = row[:, union_idx].A.ravel() | ||
| 184 | if self.sinkhorn: | ||
| 185 | return ot.sinkhorn2(bow_i, bow_j, W_dist, self.sinkhorn_reg, numItermax=50, method='sinkhorn_stabilized',)[0] | ||
| 186 | else: | ||
| 187 | return ot.emd2(bow_i, bow_j, W_dist) | ||
| 188 | |||
| 189 | def _wmd_row(self, row): | ||
| 190 | X_train = self._fit_X | ||
| 191 | n_samples_train = X_train.shape[0] | ||
| 192 | return [self._wmd(i, row, X_train) for i in range(n_samples_train)] | ||
| 193 | |||
| 194 | def _pairwise_wmd(self, X_test, X_train=None): | ||
| 195 | n_samples_test = X_test.shape[0] | ||
| 196 | |||
| 197 | if X_train is None: | ||
| 198 | X_train = self._fit_X | ||
| 199 | pool = Pool(nodes=self.n_jobs) # Parallelization of the calculation of the distances | ||
| 200 | dist = pool.map(self._wmd_row, X_test) | ||
| 201 | return np.array(dist) | ||
| 202 | |||
| 203 | def fit(self, X, y): # X_train_idf | ||
| 204 | X = check_array(X, accept_sparse='csr', copy=True) # check if array is sparse | ||
| 205 | X = normalize(X, norm='l1', copy=False) | ||
| 206 | return super(WassersteinDistances, self).fit(X, y) # X_train_idf, np_ones(document collection size) | ||
| 207 | |||
| 208 | def predict(self, X): | ||
| 209 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 210 | X = normalize(X, norm='l1', copy=False) | ||
| 211 | dist = self._pairwise_wmd(X) | ||
| 212 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | ||
| 213 | return super(WassersteinDistances, self).predict(dist) | ||
| 214 | |||
| 215 | def kneighbors(self, X, n_neighbors=1): # X : X_train_idf | ||
| 216 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 217 | X = normalize(X, norm='l1', copy=False) | ||
| 218 | dist = self._pairwise_wmd(X) | ||
| 219 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | ||
| 220 | return lapjv(dist) # and here is the matching part | ||
| 221 | |||
| 222 | def mrr_precision_at_k(golden, preds, k_list=[1,]): | ||
| 223 | """ | ||
| 224 | Calculates Mean Reciprocal Error and Hits@1 == Precision@1 | ||
| 225 | """ | ||
| 226 | my_score = 0 | ||
| 227 | precision_at = np.zeros(len(k_list)) | ||
| 228 | for key, elem in enumerate(golden): | ||
| 229 | if elem in preds[key]: | ||
| 230 | location = np.where(preds[key]==elem)[0][0] | ||
| 231 | my_score += 1/(1+ location) | ||
| 232 | for k_index, k_value in enumerate(k_list): | ||
| 233 | if location < k_value: | ||
| 234 | precision_at[k_index] += 1 | ||
| 235 | return my_score/len(golden), (precision_at/len(golden))[0] | ||
| 236 | |||
| 237 | print(f'WMD - tfidf: {source_lang} - {target_lang}') | ||
| 238 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14) | ||
| 239 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 240 | row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
| 241 | result = zip(row_ind, col_ind) | ||
| 242 | hit_one = len([x for x,y in result if x == y]) | ||
| 243 | print(f'{hit_one} definitions have been mapped correctly') | ||
| 244 | |||
| 245 | import csv | ||
| 246 | percentage = hit_one / instances * 100 | ||
| 247 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | ||
| 248 | with open('/home/syigit/multilang_results/wmd_matching_result.csv', 'a') as f: | ||
| 249 | writer = csv.writer(f) | ||
| 250 | writer.writerow(fields) | ||
| 251 | |||
| 252 | print(f'Sinkhorn - tfidf: {source_lang} - {target_lang}') | ||
| 253 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=True) | ||
| 254 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 255 | row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
| 256 | |||
| 257 | result = zip(row_ind, col_ind) | ||
| 258 | hit_one = len([x for x,y in result if x == y]) | ||
| 259 | print(f'{hit_one} definitions have been mapped correctly') | ||
| 260 | |||
| 261 | percentage = hit_one / instances * 100 | ||
| 262 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | ||
| 263 | with open('/home/syigit/multilang_results/sinkhorn_matching_result.csv', 'a') as f: | ||
| 264 | writer = csv.writer(f) | ||
| 265 | writer.writerow(fields) | ||
diff --git a/WMD_retrieval.py b/WMD_retrieval.py new file mode 100644 index 0000000..f99eaa1 --- /dev/null +++ b/WMD_retrieval.py | |||
| @@ -0,0 +1,259 @@ | |||
| 1 | ########################### | ||
| 2 | # Wasserstein Retrieval # | ||
| 3 | ########################### | ||
| 4 | import argparse | ||
| 5 | |||
| 6 | parser = argparse.ArgumentParser(description='run retrieval using wmd and wasserstein distances') | ||
| 7 | parser.add_argument('source_lang', help='source language short name') | ||
| 8 | parser.add_argument('target_lang', help='target language short name') | ||
| 9 | parser.add_argument('source_vector', help='path of the source vector') | ||
| 10 | parser.add_argument('target_vector', help='path of the target vector') | ||
| 11 | parser.add_argument('source_defs', help='path of the source definitions') | ||
| 12 | parser.add_argument('target_defs', help='path of the target definitions') | ||
| 13 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
| 14 | |||
| 15 | args = parser.parse_args() | ||
| 16 | |||
| 17 | source_lang = args.source_lang | ||
| 18 | target_lang = args.target_lang | ||
| 19 | |||
| 20 | def load_embeddings(path, dimension=300): | ||
| 21 | """ | ||
| 22 | Loads the embeddings from a word2vec formatted file. | ||
| 23 | word2vec format is one line per word and it's associated embedding | ||
| 24 | (dimension x floating numbers) separated by spaces | ||
| 25 | The first line may or may not include the word count and dimension | ||
| 26 | """ | ||
| 27 | vectors = {} | ||
| 28 | with open(path, mode='r', encoding='utf8') as fp: | ||
| 29 | first_line = fp.readline().rstrip('\n') | ||
| 30 | if first_line.count(' ') == 1: | ||
| 31 | # includes the "word_count dimension" information | ||
| 32 | (word_count, dimension) = map(int, first_line.split()) | ||
| 33 | else: # assume the file only contains vectors | ||
| 34 | fp.seek(0) | ||
| 35 | for line in fp: | ||
| 36 | elems = line.split() | ||
| 37 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
| 38 | return vectors | ||
| 39 | |||
| 40 | ####################################################################### | ||
| 41 | # Vectors Load Here # | ||
| 42 | ####################################################################### | ||
| 43 | |||
| 44 | source_vectors_filename = args.source_vector | ||
| 45 | target_vectors_filename = args.target_vector | ||
| 46 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 47 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 48 | |||
| 49 | ####################################################################### | ||
| 50 | # Corpora Load Here # | ||
| 51 | ####################################################################### | ||
| 52 | source_defs_filename = args.source_defs | ||
| 53 | target_defs_filename = args.target_defs | ||
| 54 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | ||
| 55 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
| 56 | |||
| 57 | import numpy as np | ||
| 58 | from mosestokenizer import * | ||
| 59 | |||
| 60 | def clean_corpus_using_embeddings_vocabulary( | ||
| 61 | embeddings_dictionary, | ||
| 62 | corpus, | ||
| 63 | vectors, | ||
| 64 | language, | ||
| 65 | ): | ||
| 66 | ''' | ||
| 67 | Cleans corpus using the dictionary of embeddings. | ||
| 68 | Any word without an associated embedding in the dictionary is ignored. | ||
| 69 | Adds '__target-language' and '__source-language' at the end of the words according to their language. | ||
| 70 | ''' | ||
| 71 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
| 72 | words_we_want = set(embeddings_dictionary) | ||
| 73 | tokenize = MosesTokenizer(language) | ||
| 74 | for key, doc in enumerate(corpus): | ||
| 75 | clean_doc = [] | ||
| 76 | words = tokenize(doc) | ||
| 77 | for word in words: | ||
| 78 | if word in words_we_want: | ||
| 79 | clean_doc.append(word + '__%s' % language) | ||
| 80 | clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float) | ||
| 81 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
| 82 | keys.append(key) | ||
| 83 | clean_corpus.append(' '.join(clean_doc)) | ||
| 84 | tokenize.close() | ||
| 85 | return np.array(clean_corpus), clean_vectors, keys | ||
| 86 | |||
| 87 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 88 | set(vectors_source.keys()), | ||
| 89 | defs_source, | ||
| 90 | vectors_source, | ||
| 91 | source_lang, | ||
| 92 | ) | ||
| 93 | |||
| 94 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 95 | set(vectors_target.keys()), | ||
| 96 | defs_target, | ||
| 97 | vectors_target, | ||
| 98 | target_lang, | ||
| 99 | ) | ||
| 100 | |||
| 101 | # Here is the part Wasserstein prunes two corporas to 500 articles each | ||
| 102 | # Our dataset does not have that luxury (turns out it's not a luxury but a necessity) | ||
| 103 | |||
| 104 | import random | ||
| 105 | take = args.instances | ||
| 106 | |||
| 107 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
| 108 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 109 | experiment_keys = random.sample(common_keys, take) | ||
| 110 | |||
| 111 | instances = len(experiment_keys) | ||
| 112 | |||
| 113 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
| 114 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
| 115 | |||
| 116 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | ||
| 117 | |||
| 118 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 119 | |||
| 120 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
| 121 | |||
| 122 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
| 123 | common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors] | ||
| 124 | W_common = [] | ||
| 125 | for w in common: | ||
| 126 | if w in clean_src_vectors: | ||
| 127 | W_common.append(np.array(clean_src_vectors[w])) | ||
| 128 | else: | ||
| 129 | W_common.append(np.array(clean_target_vectors[w])) | ||
| 130 | |||
| 131 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | ||
| 132 | |||
| 133 | from sklearn.preprocessing import normalize | ||
| 134 | W_common = np.array(W_common) | ||
| 135 | W_common = normalize(W_common) | ||
| 136 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) | ||
| 137 | vect.fit(clean_src_corpus + clean_target_corpus) | ||
| 138 | X_train_idf = vect.transform(clean_src_corpus) | ||
| 139 | X_test_idf = vect.transform(clean_target_corpus) | ||
| 140 | |||
| 141 | vect_tf = CountVectorizer(vocabulary=common, dtype=np.double) | ||
| 142 | vect_tf.fit(clean_src_corpus + clean_target_corpus) | ||
| 143 | X_train_tf = vect_tf.transform(clean_src_corpus) | ||
| 144 | X_test_tf = vect_tf.transform(clean_target_corpus) | ||
| 145 | |||
| 146 | import ot | ||
| 147 | from sklearn.neighbors import KNeighborsClassifier | ||
| 148 | from sklearn.metrics import euclidean_distances | ||
| 149 | from sklearn.externals.joblib import Parallel, delayed | ||
| 150 | from sklearn.utils import check_array | ||
| 151 | from sklearn.metrics.scorer import check_scoring | ||
| 152 | from pathos.multiprocessing import ProcessingPool as Pool | ||
| 153 | from sklearn.metrics import euclidean_distances | ||
| 154 | |||
| 155 | class WassersteinDistances(KNeighborsClassifier): | ||
| 156 | """ | ||
| 157 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | ||
| 158 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | ||
| 159 | Wasserstein is parametrized by the distances between the individual points of the distributions. | ||
| 160 | In this work, we propose to use cross-lingual embeddings for calculating these distances. | ||
| 161 | |||
| 162 | """ | ||
| 163 | def __init__(self, W_embed, n_neighbors=1, n_jobs=1, verbose=False, sinkhorn= False, sinkhorn_reg=0.1): | ||
| 164 | """ | ||
| 165 | Initialization of the class. | ||
| 166 | Arguments | ||
| 167 | --------- | ||
| 168 | W_embed: embeddings of the words, np.array | ||
| 169 | verbose: True/False | ||
| 170 | """ | ||
| 171 | self.sinkhorn = sinkhorn | ||
| 172 | self.sinkhorn_reg = sinkhorn_reg | ||
| 173 | self.W_embed = W_embed | ||
| 174 | self.verbose = verbose | ||
| 175 | super(WassersteinDistances, self).__init__(n_neighbors=n_neighbors, n_jobs=n_jobs, metric='precomputed', algorithm='brute') | ||
| 176 | |||
| 177 | def _wmd(self, i, row, X_train): | ||
| 178 | union_idx = np.union1d(X_train[i].indices, row.indices) | ||
| 179 | W_minimal = self.W_embed[union_idx] | ||
| 180 | W_dist = euclidean_distances(W_minimal) | ||
| 181 | bow_i = X_train[i, union_idx].A.ravel() | ||
| 182 | bow_j = row[:, union_idx].A.ravel() | ||
| 183 | if self.sinkhorn: | ||
| 184 | return ot.sinkhorn2(bow_i, bow_j, W_dist, self.sinkhorn_reg, numItermax=50, method='sinkhorn_stabilized',)[0] | ||
| 185 | else: | ||
| 186 | return ot.emd2(bow_i, bow_j, W_dist) | ||
| 187 | |||
| 188 | def _wmd_row(self, row): | ||
| 189 | X_train = self._fit_X | ||
| 190 | n_samples_train = X_train.shape[0] | ||
| 191 | return [self._wmd(i, row, X_train) for i in range(n_samples_train)] | ||
| 192 | |||
| 193 | def _pairwise_wmd(self, X_test, X_train=None): | ||
| 194 | n_samples_test = X_test.shape[0] | ||
| 195 | |||
| 196 | if X_train is None: | ||
| 197 | X_train = self._fit_X | ||
| 198 | pool = Pool(nodes=self.n_jobs) # Parallelization of the calculation of the distances | ||
| 199 | dist = pool.map(self._wmd_row, X_test) | ||
| 200 | return np.array(dist) | ||
| 201 | |||
| 202 | def fit(self, X, y): | ||
| 203 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 204 | X = normalize(X, norm='l1', copy=False) | ||
| 205 | return super(WassersteinDistances, self).fit(X, y) | ||
| 206 | |||
| 207 | def predict(self, X): | ||
| 208 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 209 | X = normalize(X, norm='l1', copy=False) | ||
| 210 | dist = self._pairwise_wmd(X) | ||
| 211 | return super(WassersteinDistances, self).predict(dist) | ||
| 212 | |||
| 213 | def kneighbors(self, X, n_neighbors=1): | ||
| 214 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 215 | X = normalize(X, norm='l1', copy=False) | ||
| 216 | dist = self._pairwise_wmd(X) | ||
| 217 | return super(WassersteinDistances, self).kneighbors(dist, n_neighbors) | ||
| 218 | |||
| 219 | def mrr_precision_at_k(golden, preds, k_list=[1,]): | ||
| 220 | """ | ||
| 221 | Calculates Mean Reciprocal Error and Hits@1 == Precision@1 | ||
| 222 | """ | ||
| 223 | my_score = 0 | ||
| 224 | precision_at = np.zeros(len(k_list)) | ||
| 225 | for key, elem in enumerate(golden): | ||
| 226 | if elem in preds[key]: | ||
| 227 | location = np.where(preds[key]==elem)[0][0] | ||
| 228 | my_score += 1/(1+ location) | ||
| 229 | for k_index, k_value in enumerate(k_list): | ||
| 230 | if location < k_value: | ||
| 231 | precision_at[k_index] += 1 | ||
| 232 | return my_score/len(golden), (precision_at/len(golden))[0] | ||
| 233 | |||
| 234 | print(f'WMD - tfidf: {source_lang} - {target_lang}') | ||
| 235 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14) | ||
| 236 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 237 | dist, preds = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
| 238 | mrr, p_at_1 = mrr_precision_at_k(list(range(len(preds))), preds) | ||
| 239 | print(f'MRR: {mrr} | Precision @ 1: {p_at_1}') | ||
| 240 | |||
| 241 | import csv | ||
| 242 | percentage = p_at_1 * 100 | ||
| 243 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{mrr}', f'{p_at_1}', f'{percentage}'] | ||
| 244 | with open('/home/syigit/multilang_results/wmd_retrieval_result.csv', 'a') as f: | ||
| 245 | writer = csv.writer(f) | ||
| 246 | writer.writerow(fields) | ||
| 247 | |||
| 248 | print(f'Sinkhorn - tfidf: {source_lang} - {target_lang}') | ||
| 249 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=True) | ||
| 250 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 251 | dist, preds = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
| 252 | mrr, p_at_1 = mrr_precision_at_k(list(range(len(preds))), preds) | ||
| 253 | print(f'MRR: {mrr} | Precision @ 1: {p_at_1}') | ||
| 254 | |||
| 255 | percentage = p_at_1 * 100 | ||
| 256 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{mrr}', f'{p_at_1}', f'{percentage}'] | ||
| 257 | with open('/home/syigit/multilang_results/sinkhorn_retrieval_result.csv', 'a') as f: | ||
| 258 | writer = csv.writer(f) | ||
| 259 | writer.writerow(fields) | ||
diff --git a/Wass_Matcher.py b/Wass_Matcher.py new file mode 100644 index 0000000..44b29eb --- /dev/null +++ b/Wass_Matcher.py | |||
| @@ -0,0 +1,76 @@ | |||
| 1 | import ot | ||
| 2 | from sklearn.preprocessing import normalize | ||
| 3 | from lapjv import lapjv | ||
| 4 | from sklearn.neighbors import KNeighborsClassifier | ||
| 5 | from sklearn.metrics import euclidean_distances | ||
| 6 | from sklearn.externals.joblib import Parallel, delayed | ||
| 7 | from sklearn.utils import check_array | ||
| 8 | from sklearn.metrics.scorer import check_scoring | ||
| 9 | from pathos.multiprocessing import ProcessingPool as Pool | ||
| 10 | from sklearn.metrics import euclidean_distances | ||
| 11 | import numpy as np | ||
| 12 | |||
| 13 | class Wasserstein_Matcher(KNeighborsClassifier): | ||
| 14 | """ | ||
| 15 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | ||
| 16 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | ||
| 17 | Wasserstein is parametrized by the distances between the individual points of the distributions. | ||
| 18 | """ | ||
| 19 | def __init__(self, W_embed, n_neighbors=1, n_jobs=1, verbose=False, sinkhorn= False, sinkhorn_reg=0.1): | ||
| 20 | """ | ||
| 21 | Initialization of the class. | ||
| 22 | Arguments | ||
| 23 | --------- | ||
| 24 | W_embed: embeddings of the words, np.array | ||
| 25 | verbose: True/False | ||
| 26 | """ | ||
| 27 | self.sinkhorn = sinkhorn | ||
| 28 | self.sinkhorn_reg = sinkhorn_reg | ||
| 29 | self.W_embed = W_embed | ||
| 30 | self.verbose = verbose | ||
| 31 | super(Wasserstein_Matcher, self).__init__(n_neighbors=n_neighbors, n_jobs=n_jobs, metric='precomputed', algorithm='brute') | ||
| 32 | |||
| 33 | def _wmd(self, i, row, X_train): | ||
| 34 | union_idx = np.union1d(X_train[i].indices, row.indices) | ||
| 35 | W_minimal = self.W_embed[union_idx] | ||
| 36 | W_dist = euclidean_distances(W_minimal) | ||
| 37 | bow_i = X_train[i, union_idx].A.ravel() | ||
| 38 | bow_j = row[:, union_idx].A.ravel() | ||
| 39 | if self.sinkhorn: | ||
| 40 | return ot.sinkhorn2(bow_i, bow_j, W_dist, self.sinkhorn_reg, numItermax=50, method='sinkhorn_stabilized',)[0] | ||
| 41 | else: | ||
| 42 | return ot.emd2(bow_i, bow_j, W_dist) | ||
| 43 | |||
| 44 | def _wmd_row(self, row): | ||
| 45 | X_train = self._fit_X | ||
| 46 | n_samples_train = X_train.shape[0] | ||
| 47 | return [self._wmd(i, row, X_train) for i in range(n_samples_train)] | ||
| 48 | |||
| 49 | def _pairwise_wmd(self, X_test, X_train=None): | ||
| 50 | n_samples_test = X_test.shape[0] | ||
| 51 | |||
| 52 | if X_train is None: | ||
| 53 | X_train = self._fit_X | ||
| 54 | pool = Pool(nodes=self.n_jobs) # Parallelization of the calculation of the distances | ||
| 55 | dist = pool.map(self._wmd_row, X_test) | ||
| 56 | return np.array(dist) | ||
| 57 | |||
| 58 | def fit(self, X, y): # X_train_idf | ||
| 59 | X = check_array(X, accept_sparse='csr', copy=True) # check if array is sparse | ||
| 60 | X = normalize(X, norm='l1', copy=False) | ||
| 61 | return super(Wasserstein_Matcher, self).fit(X, y) # X_train_idf, np_ones(document collection size) | ||
| 62 | |||
| 63 | def predict(self, X): | ||
| 64 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 65 | X = normalize(X, norm='l1', copy=False) | ||
| 66 | dist = self._pairwise_wmd(X) | ||
| 67 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | ||
| 68 | return super(Wasserstein_Matcher, self).predict(dist) | ||
| 69 | |||
| 70 | def kneighbors(self, X, n_neighbors=1): # X : X_train_idf | ||
| 71 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 72 | X = normalize(X, norm='l1', copy=False) | ||
| 73 | dist = self._pairwise_wmd(X) | ||
| 74 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | ||
| 75 | return lapjv(dist) # and here is the matching part | ||
| 76 | |||
diff --git a/Wass_Retriever.py b/Wass_Retriever.py new file mode 100644 index 0000000..036cf93 --- /dev/null +++ b/Wass_Retriever.py | |||
| @@ -0,0 +1,73 @@ | |||
| 1 | import ot | ||
| 2 | from sklearn.preprocessing import normalize | ||
| 3 | from sklearn.neighbors import KNeighborsClassifier | ||
| 4 | from sklearn.metrics import euclidean_distances | ||
| 5 | from sklearn.externals.joblib import Parallel, delayed | ||
| 6 | from sklearn.utils import check_array | ||
| 7 | from sklearn.metrics.scorer import check_scoring | ||
| 8 | from pathos.multiprocessing import ProcessingPool as Pool | ||
| 9 | from sklearn.metrics import euclidean_distances | ||
| 10 | import numpy as np | ||
| 11 | |||
| 12 | class Wasserstein_Retriever(KNeighborsClassifier): | ||
| 13 | """ | ||
| 14 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | ||
| 15 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | ||
| 16 | Wasserstein is parametrized by the distances between the individual points of the distributions. | ||
| 17 | """ | ||
| 18 | def __init__(self, W_embed, n_neighbors=1, n_jobs=1, verbose=False, sinkhorn= False, sinkhorn_reg=0.1): | ||
| 19 | """ | ||
| 20 | Initialization of the class. | ||
| 21 | Arguments | ||
| 22 | --------- | ||
| 23 | W_embed: embeddings of the words, np.array | ||
| 24 | verbose: True/False | ||
| 25 | """ | ||
| 26 | self.sinkhorn = sinkhorn | ||
| 27 | self.sinkhorn_reg = sinkhorn_reg | ||
| 28 | self.W_embed = W_embed | ||
| 29 | self.verbose = verbose | ||
| 30 | super(Wasserstein_Retriever, self).__init__(n_neighbors=n_neighbors, n_jobs=n_jobs, metric='precomputed', algorithm='brute') | ||
| 31 | |||
| 32 | def _wmd(self, i, row, X_train): | ||
| 33 | union_idx = np.union1d(X_train[i].indices, row.indices) | ||
| 34 | W_minimal = self.W_embed[union_idx] | ||
| 35 | W_dist = euclidean_distances(W_minimal) | ||
| 36 | bow_i = X_train[i, union_idx].A.ravel() | ||
| 37 | bow_j = row[:, union_idx].A.ravel() | ||
| 38 | if self.sinkhorn: | ||
| 39 | return ot.sinkhorn2(bow_i, bow_j, W_dist, self.sinkhorn_reg, numItermax=50, method='sinkhorn_stabilized',)[0] | ||
| 40 | else: | ||
| 41 | return ot.emd2(bow_i, bow_j, W_dist) | ||
| 42 | |||
| 43 | def _wmd_row(self, row): | ||
| 44 | X_train = self._fit_X | ||
| 45 | n_samples_train = X_train.shape[0] | ||
| 46 | return [self._wmd(i, row, X_train) for i in range(n_samples_train)] | ||
| 47 | |||
| 48 | def _pairwise_wmd(self, X_test, X_train=None): | ||
| 49 | n_samples_test = X_test.shape[0] | ||
| 50 | |||
| 51 | if X_train is None: | ||
| 52 | X_train = self._fit_X | ||
| 53 | pool = Pool(nodes=self.n_jobs) # Parallelization of the calculation of the distances | ||
| 54 | dist = pool.map(self._wmd_row, X_test) | ||
| 55 | return np.array(dist) | ||
| 56 | |||
| 57 | def fit(self, X, y): | ||
| 58 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 59 | X = normalize(X, norm='l1', copy=False) | ||
| 60 | return super(Wasserstein_Retriever, self).fit(X, y) | ||
| 61 | |||
| 62 | def predict(self, X): | ||
| 63 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 64 | X = normalize(X, norm='l1', copy=False) | ||
| 65 | dist = self._pairwise_wmd(X) | ||
| 66 | return super(Wasserstein_Retriever, self).predict(dist) | ||
| 67 | |||
| 68 | def kneighbors(self, X, n_neighbors=1): | ||
| 69 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 70 | X = normalize(X, norm='l1', copy=False) | ||
| 71 | dist = self._pairwise_wmd(X) | ||
| 72 | return super(Wasserstein_Retriever, self).kneighbors(dist, n_neighbors) | ||
| 73 | |||
diff --git a/sentence_emb_matching.py b/sentence_emb_matching.py new file mode 100644 index 0000000..38812d7 --- /dev/null +++ b/sentence_emb_matching.py | |||
| @@ -0,0 +1,153 @@ | |||
| 1 | import argparse | ||
| 2 | |||
| 3 | parser = argparse.ArgumentParser(description='run matching using sentence embeddings and cosine similarity') | ||
| 4 | parser.add_argument('source_lang', help='source language short name') | ||
| 5 | parser.add_argument('target_lang', help='target language short name') | ||
| 6 | parser.add_argument('source_vector', help='path of the source vector') | ||
| 7 | parser.add_argument('target_vector', help='path of the target vector') | ||
| 8 | parser.add_argument('source_defs', help='path of the source definitions') | ||
| 9 | parser.add_argument('target_defs', help='path of the target definitions') | ||
| 10 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
| 11 | |||
| 12 | args = parser.parse_args() | ||
| 13 | |||
| 14 | source_lang = args.source_lang | ||
| 15 | target_lang = args.target_lang | ||
| 16 | |||
| 17 | def load_embeddings(path, dimension = 300): | ||
| 18 | """ | ||
| 19 | Loads the embeddings from a word2vec formatted file. | ||
| 20 | The first line may or may not include the word count and dimension | ||
| 21 | """ | ||
| 22 | vectors = {} | ||
| 23 | with open(path, mode='r', encoding='utf8') as fp: | ||
| 24 | first_line = fp.readline().rstrip('\n') | ||
| 25 | if first_line.count(' ') == 1: # includes the "word_count dimension" information | ||
| 26 | (word_count, dimension) = map(int, first_line.split()) | ||
| 27 | else: # assume the file only contains vectors | ||
| 28 | fp.seek(0) | ||
| 29 | for line in fp: | ||
| 30 | elems = line.split() | ||
| 31 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
| 32 | return vectors | ||
| 33 | |||
| 34 | source_vectors_filename = args.source_vector | ||
| 35 | target_vectors_filename = args.target_vector | ||
| 36 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 37 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 38 | |||
| 39 | source_defs_filename = args.source_defs | ||
| 40 | target_defs_filename = args.target_defs | ||
| 41 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | ||
| 42 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
| 43 | |||
| 44 | import numpy as np | ||
| 45 | from mosestokenizer import * | ||
| 46 | |||
| 47 | def clean_corpus_using_embeddings_vocabulary( | ||
| 48 | embeddings_dictionary, | ||
| 49 | corpus, | ||
| 50 | vectors, | ||
| 51 | language, | ||
| 52 | ): | ||
| 53 | ''' | ||
| 54 | Cleans corpus using the dictionary of embeddings. | ||
| 55 | Any word without an associated embedding in the dictionary is ignored. | ||
| 56 | ''' | ||
| 57 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
| 58 | words_we_want = set(embeddings_dictionary) | ||
| 59 | tokenize = MosesTokenizer(language) | ||
| 60 | for key, doc in enumerate(corpus): | ||
| 61 | clean_doc = [] | ||
| 62 | words = tokenize(doc) | ||
| 63 | for word in words: | ||
| 64 | if word in words_we_want: | ||
| 65 | clean_doc.append(word) | ||
| 66 | clean_vectors[word] = np.array(vectors[word].split()).astype(np.float) | ||
| 67 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
| 68 | keys.append(key) | ||
| 69 | clean_corpus.append(' '.join(clean_doc)) | ||
| 70 | tokenize.close() | ||
| 71 | return np.array(clean_corpus), clean_vectors, keys | ||
| 72 | |||
| 73 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 74 | set(vectors_source.keys()), | ||
| 75 | defs_source, | ||
| 76 | vectors_source, | ||
| 77 | source_lang, | ||
| 78 | ) | ||
| 79 | |||
| 80 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 81 | set(vectors_target.keys()), | ||
| 82 | defs_target, | ||
| 83 | vectors_target, | ||
| 84 | target_lang, | ||
| 85 | ) | ||
| 86 | |||
| 87 | import random | ||
| 88 | take = args.instances | ||
| 89 | |||
| 90 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
| 91 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 92 | experiment_keys = random.sample(common_keys, take) | ||
| 93 | |||
| 94 | instances = len(experiment_keys) | ||
| 95 | |||
| 96 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
| 97 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
| 98 | |||
| 99 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | ||
| 100 | |||
| 101 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 102 | |||
| 103 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
| 104 | |||
| 105 | vocab_counter = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
| 106 | common = [w for w in vocab_counter.get_feature_names() if w in clean_src_vectors or w in clean_target_vectors] | ||
| 107 | W_common = [] | ||
| 108 | |||
| 109 | for w in common: | ||
| 110 | if w in clean_src_vectors: | ||
| 111 | W_common.append(np.array(clean_src_vectors[w])) | ||
| 112 | else: | ||
| 113 | W_common.append(np.array(clean_target_vectors[w])) | ||
| 114 | |||
| 115 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | ||
| 116 | |||
| 117 | from sklearn.preprocessing import normalize | ||
| 118 | W_common = np.array(W_common) | ||
| 119 | W_common = normalize(W_common) # default is l2 | ||
| 120 | |||
| 121 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2') | ||
| 122 | vect_tfidf.fit(clean_src_corpus + clean_target_corpus) | ||
| 123 | X_idf_source = vect_tfidf.transform(clean_src_corpus) | ||
| 124 | X_idf_target = vect_tfidf.transform(clean_target_corpus) | ||
| 125 | |||
| 126 | print(f'Matrices are {X_idf_source.shape} and {W_common.shape}') | ||
| 127 | print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}') | ||
| 128 | |||
| 129 | X_idf_source_array = X_idf_source.toarray() | ||
| 130 | X_idf_target_array = X_idf_target.toarray() | ||
| 131 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
| 132 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
| 133 | |||
| 134 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
| 135 | |||
| 136 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
| 137 | |||
| 138 | from lapjv import lapjv | ||
| 139 | cost_matrix = cost_matrix * -1000 | ||
| 140 | row_ind, col_ind, a = lapjv(cost_matrix, verbose=False) | ||
| 141 | |||
| 142 | result = zip(row_ind, col_ind) | ||
| 143 | hit_one = len([x for x,y in result if x == y]) | ||
| 144 | print(f'{hit_one} definitions have been mapped correctly, shape of cost matrix: {str(cost_matrix.shape)}') | ||
| 145 | |||
| 146 | import csv | ||
| 147 | percentage = hit_one / instances * 100 | ||
| 148 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | ||
| 149 | |||
| 150 | with open('semb_matcing.csv', 'a') as f: | ||
| 151 | writer = csv.writer(f) | ||
| 152 | writer.writerow(fields) | ||
| 153 | |||
diff --git a/sentence_emb_retrieval.py b/sentence_emb_retrieval.py new file mode 100644 index 0000000..63ebcdc --- /dev/null +++ b/sentence_emb_retrieval.py | |||
| @@ -0,0 +1,151 @@ | |||
| 1 | import argparse | ||
| 2 | |||
| 3 | parser = argparse.ArgumentParser(description='Run Retrieval using Sentence Embedding + Cosine') | ||
| 4 | parser.add_argument('source_lang', help='source language short name') | ||
| 5 | parser.add_argument('target_lang', help='target language short name') | ||
| 6 | parser.add_argument('source_vector', help='path of the source vector') | ||
| 7 | parser.add_argument('target_vector', help='path of the target vector') | ||
| 8 | parser.add_argument('source_defs', help='path of the source definitions') | ||
| 9 | parser.add_argument('target_defs', help='path of the target definitions') | ||
| 10 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int) | ||
| 11 | args = parser.parse_args() | ||
| 12 | |||
| 13 | source_lang = args.source_lang | ||
| 14 | target_lang = args.target_lang | ||
| 15 | |||
| 16 | def load_embeddings(path, dimension = 300): | ||
| 17 | """ | ||
| 18 | Loads the embeddings from a word2vec formatted file. | ||
| 19 | The first line may or may not include the word count and dimension | ||
| 20 | """ | ||
| 21 | vectors = {} | ||
| 22 | with open(path, mode='r', encoding='utf8') as fp: | ||
| 23 | first_line = fp.readline().rstrip('\n') | ||
| 24 | if first_line.count(' ') == 1: # includes the "word_count dimension" information | ||
| 25 | (word_count, dimension) = map(int, first_line.split()) | ||
| 26 | else: # assume the file only contains vectors | ||
| 27 | fp.seek(0) | ||
| 28 | for line in fp: | ||
| 29 | elems = line.split() | ||
| 30 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
| 31 | return vectors | ||
| 32 | |||
| 33 | lang_source = args.source_lang | ||
| 34 | lang_target = args.target_lang | ||
| 35 | |||
| 36 | vectors_filename_source = args.source_vector | ||
| 37 | vectors_filename_target = args.target_vector | ||
| 38 | |||
| 39 | vectors_source = load_embeddings(vectors_filename_source) | ||
| 40 | vectors_target = load_embeddings(vectors_filename_target) | ||
| 41 | |||
| 42 | defs_filename_source = args.source_defs | ||
| 43 | defs_filename_target = args.target_defs | ||
| 44 | defs_source = [line.rstrip('\n') for line in open(defs_filename_source, encoding='utf8')] | ||
| 45 | defs_target = [line.rstrip('\n') for line in open(defs_filename_target, encoding='utf8')] | ||
| 46 | |||
| 47 | print('Read {} {} documents and {} {} documents'.format(len(defs_source), lang_source, len(defs_target), lang_target)) | ||
| 48 | |||
| 49 | import numpy as np | ||
| 50 | from mosestokenizer import * | ||
| 51 | |||
| 52 | def clean_corpus_using_embeddings_vocabulary( | ||
| 53 | embeddings_dictionary, | ||
| 54 | corpus, | ||
| 55 | vectors, | ||
| 56 | language, | ||
| 57 | ): | ||
| 58 | ''' | ||
| 59 | Cleans corpus using the dictionary of embeddings. | ||
| 60 | Any word without an associated embedding in the dictionary is ignored. | ||
| 61 | Adds '__target-language' and '__source-language' at the end of the words according to their language. | ||
| 62 | ''' | ||
| 63 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
| 64 | words_we_want = set(embeddings_dictionary) | ||
| 65 | tokenize = MosesTokenizer(language) | ||
| 66 | for key, doc in enumerate(corpus): | ||
| 67 | clean_doc = [] | ||
| 68 | words = tokenize(doc) | ||
| 69 | for word in words: | ||
| 70 | if word in words_we_want: | ||
| 71 | clean_doc.append(word + '__%s' % language) | ||
| 72 | clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float) | ||
| 73 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
| 74 | keys.append(key) | ||
| 75 | clean_corpus.append(' '.join(clean_doc)) | ||
| 76 | tokenize.close() | ||
| 77 | return np.array(clean_corpus), clean_vectors, keys | ||
| 78 | |||
| 79 | clean_corpus_source, clean_vectors_source, keys_source = clean_corpus_using_embeddings_vocabulary( | ||
| 80 | set(vectors_source.keys()), | ||
| 81 | defs_source, | ||
| 82 | vectors_source, | ||
| 83 | lang_source, | ||
| 84 | ) | ||
| 85 | |||
| 86 | clean_corpus_target, clean_vectors_target, keys_target = clean_corpus_using_embeddings_vocabulary( | ||
| 87 | set(vectors_target.keys()), | ||
| 88 | defs_target, | ||
| 89 | vectors_target, | ||
| 90 | lang_target, | ||
| 91 | ) | ||
| 92 | |||
| 93 | import random | ||
| 94 | take = args.instances | ||
| 95 | |||
| 96 | common_keys = set(keys_source).intersection(set(keys_target)) # definitions that fit the above requirements | ||
| 97 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 98 | experiment_keys = random.sample(common_keys, take) | ||
| 99 | |||
| 100 | instances = len(experiment_keys) | ||
| 101 | |||
| 102 | clean_corpus_source = list(clean_corpus_source[experiment_keys]) | ||
| 103 | clean_corpus_target = list(clean_corpus_target[experiment_keys]) | ||
| 104 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_corpus_source)}, {len(clean_corpus_target)}') | ||
| 105 | |||
| 106 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 107 | |||
| 108 | from sklearn.feature_extraction.text import CountVectorizer | ||
| 109 | from sklearn.feature_extraction.text import TfidfVectorizer | ||
| 110 | |||
| 111 | vocab_counter = CountVectorizer().fit(clean_corpus_source + clean_corpus_target) | ||
| 112 | common = [w for w in vocab_counter.get_feature_names() if w in clean_vectors_source or w in clean_vectors_target] | ||
| 113 | |||
| 114 | W_common = [] | ||
| 115 | for w in common: | ||
| 116 | if w in clean_vectors_source: | ||
| 117 | W_common.append(np.array(clean_vectors_source[w])) | ||
| 118 | else: | ||
| 119 | W_common.append(np.array(clean_vectors_target[w])) | ||
| 120 | |||
| 121 | print('The vocabulary size is %d' % (len(W_common))) | ||
| 122 | |||
| 123 | from sklearn.preprocessing import normalize | ||
| 124 | W_common = np.array(W_common) | ||
| 125 | W_common = normalize(W_common) # default is l2 | ||
| 126 | |||
| 127 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2') | ||
| 128 | vect_tfidf.fit(clean_corpus_source + clean_corpus_target) | ||
| 129 | X_idf_source = vect_tfidf.transform(clean_corpus_source) | ||
| 130 | X_idf_target = vect_tfidf.transform(clean_corpus_target) | ||
| 131 | |||
| 132 | print(f'Matrices are {X_idf_source.shape} and {W_common.shape}') | ||
| 133 | print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}') | ||
| 134 | |||
| 135 | X_idf_source_array = X_idf_source.toarray() | ||
| 136 | X_idf_target_array = X_idf_target.toarray() | ||
| 137 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
| 138 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
| 139 | |||
| 140 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
| 141 | |||
| 142 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
| 143 | |||
| 144 | hit_at_one = len([x for x,y in enumerate(cost_matrix.argmax(axis=1)) if x == y]) | ||
| 145 | |||
| 146 | import csv | ||
| 147 | percentage = hit_at_one / instances * 100 | ||
| 148 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_at_one}', f'{percentage}'] | ||
| 149 | with open('/home/syigit/multilang_results/sentence_emb_retrieval_axis_1.csv', 'a') as f: | ||
| 150 | writer = csv.writer(f) | ||
| 151 | writer.writerow(fields) | ||
