aboutsummaryrefslogtreecommitdiffstats
path: root/sentence_emb_retrieval.py
blob: 63ebcdca10bfb189dd3a42b938ec7c8f8b5fcdb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse

parser = argparse.ArgumentParser(description='Run Retrieval using Sentence Embedding + Cosine')
parser.add_argument('source_lang', help='source language short name')
parser.add_argument('target_lang', help='target language short name')
parser.add_argument('source_vector', help='path of the source vector')
parser.add_argument('target_vector', help='path of the target vector')
parser.add_argument('source_defs', help='path of the source definitions')
parser.add_argument('target_defs', help='path of the target definitions')
parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int)
args = parser.parse_args()

source_lang = args.source_lang
target_lang = args.target_lang

def load_embeddings(path, dimension = 300):
    """
    Loads the embeddings from a word2vec formatted file.
    The first line may or may not include the word count and dimension
    """
    vectors = {}
    with open(path, mode='r', encoding='utf8') as fp:
        first_line = fp.readline().rstrip('\n')
        if first_line.count(' ') == 1: # includes the "word_count dimension" information
            (word_count, dimension) = map(int, first_line.split())
        else: # assume the file only contains vectors
            fp.seek(0)
        for line in fp:
            elems = line.split()
            vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:])
    return vectors

lang_source = args.source_lang
lang_target = args.target_lang

vectors_filename_source = args.source_vector
vectors_filename_target = args.target_vector

vectors_source = load_embeddings(vectors_filename_source)
vectors_target = load_embeddings(vectors_filename_target)

defs_filename_source = args.source_defs
defs_filename_target = args.target_defs
defs_source = [line.rstrip('\n') for line in open(defs_filename_source, encoding='utf8')]
defs_target = [line.rstrip('\n') for line in open(defs_filename_target, encoding='utf8')]

print('Read {} {} documents and {} {} documents'.format(len(defs_source), lang_source, len(defs_target), lang_target))

import numpy as np
from mosestokenizer import *

def clean_corpus_using_embeddings_vocabulary(
        embeddings_dictionary,
        corpus,
        vectors,
        language,
        ):
    '''
    Cleans corpus using the dictionary of embeddings.
    Any word without an associated embedding in the dictionary is ignored.
    Adds '__target-language' and '__source-language' at the end of the words according to their language.
    '''
    clean_corpus, clean_vectors, keys = [], {}, []
    words_we_want = set(embeddings_dictionary)
    tokenize = MosesTokenizer(language)
    for key, doc in enumerate(corpus):
        clean_doc = []
        words = tokenize(doc)
        for word in words:
            if word in words_we_want:
                clean_doc.append(word + '__%s' % language)
                clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float)
        if len(clean_doc) > 3 and len(clean_doc) < 25:
            keys.append(key)
        clean_corpus.append(' '.join(clean_doc))
    tokenize.close()
    return np.array(clean_corpus), clean_vectors, keys

clean_corpus_source, clean_vectors_source, keys_source = clean_corpus_using_embeddings_vocabulary(
        set(vectors_source.keys()),
        defs_source,
        vectors_source,
        lang_source,
        )

clean_corpus_target, clean_vectors_target, keys_target = clean_corpus_using_embeddings_vocabulary(
        set(vectors_target.keys()),
        defs_target,
        vectors_target,
        lang_target,
        )

import random
take = args.instances

common_keys = set(keys_source).intersection(set(keys_target)) # definitions that fit the above requirements
take = min(len(common_keys), take) # you can't sample more than length
experiment_keys = random.sample(common_keys, take)

instances = len(experiment_keys)

clean_corpus_source = list(clean_corpus_source[experiment_keys])
clean_corpus_target = list(clean_corpus_target[experiment_keys])
print(f'{source_lang} - {target_lang} : document sizes: {len(clean_corpus_source)}, {len(clean_corpus_target)}')

del vectors_source, vectors_target, defs_source, defs_target

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

vocab_counter = CountVectorizer().fit(clean_corpus_source + clean_corpus_target)
common = [w for w in vocab_counter.get_feature_names() if w in clean_vectors_source or w in clean_vectors_target]

W_common = []
for w in common:
    if w in clean_vectors_source:
        W_common.append(np.array(clean_vectors_source[w]))
    else:
        W_common.append(np.array(clean_vectors_target[w]))

print('The vocabulary size is %d' % (len(W_common)))

from sklearn.preprocessing import normalize
W_common = np.array(W_common)
W_common = normalize(W_common) # default is l2

vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2')
vect_tfidf.fit(clean_corpus_source + clean_corpus_target)
X_idf_source = vect_tfidf.transform(clean_corpus_source)
X_idf_target = vect_tfidf.transform(clean_corpus_target)

print(f'Matrices are {X_idf_source.shape} and {W_common.shape}')
print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}')

X_idf_source_array = X_idf_source.toarray()
X_idf_target_array = X_idf_target.toarray()
S_emb_source = np.matmul(X_idf_source_array, W_common)
S_emb_target = np.matmul(X_idf_target_array, W_common)

S_emb_target_transpose = np.transpose(S_emb_target)

cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose)

hit_at_one = len([x for x,y in enumerate(cost_matrix.argmax(axis=1)) if x == y])

import csv
percentage = hit_at_one / instances * 100
fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_at_one}', f'{percentage}']
with open('/home/syigit/multilang_results/sentence_emb_retrieval_axis_1.csv', 'a') as f:
    writer = csv.writer(f)
    writer.writerow(fields)