1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
import argparse
parser = argparse.ArgumentParser(description='run matching using sentence embeddings and cosine similarity')
parser.add_argument('source_lang', help='source language short name')
parser.add_argument('target_lang', help='target language short name')
parser.add_argument('source_vector', help='path of the source vector')
parser.add_argument('target_vector', help='path of the target vector')
parser.add_argument('source_defs', help='path of the source definitions')
parser.add_argument('target_defs', help='path of the target definitions')
parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int)
args = parser.parse_args()
source_lang = args.source_lang
target_lang = args.target_lang
def load_embeddings(path, dimension = 300):
"""
Loads the embeddings from a word2vec formatted file.
The first line may or may not include the word count and dimension
"""
vectors = {}
with open(path, mode='r', encoding='utf8') as fp:
first_line = fp.readline().rstrip('\n')
if first_line.count(' ') == 1: # includes the "word_count dimension" information
(word_count, dimension) = map(int, first_line.split())
else: # assume the file only contains vectors
fp.seek(0)
for line in fp:
elems = line.split()
vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:])
return vectors
source_vectors_filename = args.source_vector
target_vectors_filename = args.target_vector
vectors_source = load_embeddings(source_vectors_filename)
vectors_target = load_embeddings(target_vectors_filename)
source_defs_filename = args.source_defs
target_defs_filename = args.target_defs
defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')]
defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')]
import numpy as np
from mosestokenizer import *
def clean_corpus_using_embeddings_vocabulary(
embeddings_dictionary,
corpus,
vectors,
language,
):
'''
Cleans corpus using the dictionary of embeddings.
Any word without an associated embedding in the dictionary is ignored.
'''
clean_corpus, clean_vectors, keys = [], {}, []
words_we_want = set(embeddings_dictionary)
tokenize = MosesTokenizer(language)
for key, doc in enumerate(corpus):
clean_doc = []
words = tokenize(doc)
for word in words:
if word in words_we_want:
clean_doc.append(word)
clean_vectors[word] = np.array(vectors[word].split()).astype(np.float)
if len(clean_doc) > 3 and len(clean_doc) < 25:
keys.append(key)
clean_corpus.append(' '.join(clean_doc))
tokenize.close()
return np.array(clean_corpus), clean_vectors, keys
clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary(
set(vectors_source.keys()),
defs_source,
vectors_source,
source_lang,
)
clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary(
set(vectors_target.keys()),
defs_target,
vectors_target,
target_lang,
)
import random
take = args.instances
common_keys = set(src_keys).intersection(set(target_keys))
take = min(len(common_keys), take) # you can't sample more than length
experiment_keys = random.sample(common_keys, take)
instances = len(experiment_keys)
clean_src_corpus = list(clean_src_corpus[experiment_keys])
clean_target_corpus = list(clean_target_corpus[experiment_keys])
print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}')
del vectors_source, vectors_target, defs_source, defs_target
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
vocab_counter = CountVectorizer().fit(clean_src_corpus + clean_target_corpus)
common = [w for w in vocab_counter.get_feature_names() if w in clean_src_vectors or w in clean_target_vectors]
W_common = []
for w in common:
if w in clean_src_vectors:
W_common.append(np.array(clean_src_vectors[w]))
else:
W_common.append(np.array(clean_target_vectors[w]))
print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}')
from sklearn.preprocessing import normalize
W_common = np.array(W_common)
W_common = normalize(W_common) # default is l2
vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2')
vect_tfidf.fit(clean_src_corpus + clean_target_corpus)
X_idf_source = vect_tfidf.transform(clean_src_corpus)
X_idf_target = vect_tfidf.transform(clean_target_corpus)
print(f'Matrices are {X_idf_source.shape} and {W_common.shape}')
print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}')
X_idf_source_array = X_idf_source.toarray()
X_idf_target_array = X_idf_target.toarray()
S_emb_source = np.matmul(X_idf_source_array, W_common)
S_emb_target = np.matmul(X_idf_target_array, W_common)
S_emb_target_transpose = np.transpose(S_emb_target)
cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose)
from lapjv import lapjv
cost_matrix = cost_matrix * -1000
row_ind, col_ind, a = lapjv(cost_matrix, verbose=False)
result = zip(row_ind, col_ind)
hit_one = len([x for x,y in result if x == y])
print(f'{hit_one} definitions have been mapped correctly, shape of cost matrix: {str(cost_matrix.shape)}')
import csv
percentage = hit_one / instances * 100
fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}']
with open('semb_matcing.csv', 'a') as f:
writer = csv.writer(f)
writer.writerow(fields)
|