aboutsummaryrefslogtreecommitdiffstats
path: root/WMD_retrieval.py
blob: 02f35be19017174022f789d07c10d2b292943c17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import csv
import random

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import normalize

from Wasserstein_Distance import (WassersteinRetriever,
                                  clean_corpus_using_embeddings_vocabulary,
                                  load_embeddings)


def main(args):

    np.seterr(divide='ignore')  # POT has issues with divide by zero errors
    source_lang = args.source_lang
    target_lang = args.target_lang

    source_vectors_filename = args.source_vector
    target_vectors_filename = args.target_vector
    vectors_source = load_embeddings(source_vectors_filename)
    vectors_target = load_embeddings(target_vectors_filename)

    source_defs_filename = args.source_defs
    target_defs_filename = args.target_defs

    batch = args.batch
    mode = args.mode
    runfor = list()

    if mode == 'all':
        runfor.extend(['wmd', 'snk'])
    else:
        runfor.append(mode)

    defs_source = [
        line.rstrip('\n')
        for line in open(source_defs_filename, encoding='utf8')
    ]
    defs_target = [
        line.rstrip('\n')
        for line in open(target_defs_filename, encoding='utf8')
    ]

    clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary(
        set(vectors_source.keys()),
        defs_source,
        vectors_source,
        source_lang,
    )

    clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary(
        set(vectors_target.keys()),
        defs_target,
        vectors_target,
        target_lang,
    )

    take = args.instances

    common_keys = set(src_keys).intersection(set(target_keys))
    take = min(len(common_keys), take)  # you can't sample more than length
    experiment_keys = random.sample(common_keys, take)

    instances = len(experiment_keys)

    clean_src_corpus = list(clean_src_corpus[experiment_keys])
    clean_target_corpus = list(clean_target_corpus[experiment_keys])

    if not batch:
        print(
            f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}'
        )

    del vectors_source, vectors_target, defs_source, defs_target

    vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus)
    common = [
        word for word in vec.get_feature_names()
        if word in clean_src_vectors or word in clean_target_vectors
    ]
    W_common = []
    for w in common:
        if w in clean_src_vectors:
            W_common.append(np.array(clean_src_vectors[w]))
        else:
            W_common.append(np.array(clean_target_vectors[w]))

    if not batch:
        print(
            f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}'
        )

    W_common = np.array(W_common)
    W_common = normalize(W_common)
    vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None)
    vect.fit(clean_src_corpus + clean_target_corpus)
    X_train_idf = vect.transform(clean_src_corpus)
    X_test_idf = vect.transform(clean_target_corpus)

    for metric in runfor:
        if not batch:
            print(f'{metric}: {source_lang} - {target_lang}')

        clf = WassersteinRetriever(W_embed=W_common,
                                   n_neighbors=5,
                                   n_jobs=14,
                                   sinkhorn=(metric == 'snk'))
        clf.fit(X_train_idf[:instances], np.ones(instances))
        p_at_one, percentage = clf.align(X_test_idf[:instances],
                                         n_neighbors=instances)

        if not batch:
            print(f'P @ 1: {p_at_one}\ninstances: {instances}\n{percentage}%')
        else:
            fields = [
                f'{source_lang}', f'{target_lang}', f'{instances}',
                f'{p_at_one}', f'{percentage}'
            ]
            with open(f'{metric}_retrieval_result.csv', 'a') as f:
                writer = csv.writer(f)
                writer.writerow(fields)


if __name__ == "__main__":

    parser = argparse.ArgumentParser(
        description='run retrieval using wmd or snk')
    parser.add_argument('source_lang', help='source language short name')
    parser.add_argument('target_lang', help='target language short name')
    parser.add_argument('source_vector', help='path of the source vector')
    parser.add_argument('target_vector', help='path of the target vector')
    parser.add_argument('source_defs', help='path of the source definitions')
    parser.add_argument('target_defs', help='path of the target definitions')
    parser.add_argument(
        '-b',
        '--batch',
        action='store_true',
        help=
        'running in batch (store results in csv) or running a single instance (output the results)'
    )
    parser.add_argument('mode',
                        choices=['all', 'wmd', 'snk'],
                        default='all',
                        help='which methods to run')
    parser.add_argument(
        '-n',
        '--instances',
        help='number of instances in each language to retrieve',
        default=1000,
        type=int)

    args = parser.parse_args()

    main(args)