1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
import argparse
import numpy as np
from mosestokenizer import *
import nltk
import random
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import normalize
from Wasserstein_Distance import Wasserstein_Matcher
from Wasserstein_Distance import load_embeddings, clean_corpus_using_embeddings_vocabulary
def main(args):
np.seterr(divide='ignore') # POT has issues with divide by zero errors
source_lang = args.source_lang
target_lang = args.target_lang
source_vectors_filename = args.source_vector
target_vectors_filename = args.target_vector
vectors_source = load_embeddings(source_vectors_filename)
vectors_target = load_embeddings(target_vectors_filename)
source_defs_filename = args.source_defs
target_defs_filename = args.target_defs
batch = args.batch
mode = args.mode
defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')]
defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')]
clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary(
set(vectors_source.keys()),
defs_source,
vectors_source,
source_lang,
)
clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary(
set(vectors_target.keys()),
defs_target,
vectors_target,
target_lang,
)
take = args.instances
common_keys = set(src_keys).intersection(set(target_keys))
take = min(len(common_keys), take) # you can't sample more than length
experiment_keys = random.sample(common_keys, take)
instances = len(experiment_keys)
clean_src_corpus = list(clean_src_corpus[experiment_keys])
clean_target_corpus = list(clean_target_corpus[experiment_keys])
if (not batch):
print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}')
del vectors_source, vectors_target, defs_source, defs_target
vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus)
common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors]
W_common = []
for w in common:
if w in clean_src_vectors:
W_common.append(np.array(clean_src_vectors[w]))
else:
W_common.append(np.array(clean_target_vectors[w]))
if (not batch):
print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}')
W_common = np.array(W_common)
W_common = normalize(W_common)
vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None)
vect.fit(clean_src_corpus + clean_target_corpus)
X_train_idf = vect.transform(clean_src_corpus)
X_test_idf = vect.transform(clean_target_corpus)
vect_tf = CountVectorizer(vocabulary=common, dtype=np.double)
vect_tf.fit(clean_src_corpus + clean_target_corpus)
X_train_tf = vect_tf.transform(clean_src_corpus)
X_test_tf = vect_tf.transform(clean_target_corpus)
if (mode == 'wmd' or mode == 'all'):
if (not batch):
print(f'WMD - tfidf: {source_lang} - {target_lang}')
clf = Wasserstein_Matcher(W_embed=W_common, n_neighbors=5, n_jobs=14)
clf.fit(X_train_idf[:instances], np.ones(instances))
row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances)
result = zip(row_ind, col_ind)
hit_one = len([x for x,y in result if x == y])
percentage = hit_one / instances * 100
if (not batch):
print(f'{hit_one} definitions have been mapped correctly, {percentage}%')
if (batch):
import csv
fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}']
with open('wmd_matching_results.csv', 'a') as f:
writer = csv.writer(f)
writer.writerow(fields)
if (mode == 'snk' or mode == 'all'):
if (not batch):
print(f'Sinkhorn - tfidf: {source_lang} - {target_lang}')
clf = Wasserstein_Matcher(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=True)
clf.fit(X_train_idf[:instances], np.ones(instances))
row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances)
result = zip(row_ind, col_ind)
hit_one = len([x for x,y in result if x == y])
percentage = hit_one / instances * 100
if (not batch):
print(f'{hit_one} definitions have been mapped correctly, {percentage}%')
if (batch):
fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}']
with open('sinkhorn_matching_result.csv', 'a') as f:
writer = csv.writer(f)
writer.writerow(fields)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='matching using wmd and wasserstein distance')
parser.add_argument('source_lang', help='source language short name')
parser.add_argument('target_lang', help='target language short name')
parser.add_argument('source_vector', help='path of the source vector')
parser.add_argument('target_vector', help='path of the target vector')
parser.add_argument('source_defs', help='path of the source definitions')
parser.add_argument('target_defs', help='path of the target definitions')
parser.add_argument('-b', '--batch', action='store_true', help='running in batch (store results in csv) or running a single instance (output the results)')
parser.add_argument('mode', choices=['all', 'wmd', 'snk'], default='all', help='which methods to run')
parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int)
args = parser.parse_args()
main(args)
|