1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
import argparse
import numpy as np
from mosestokenizer import *
import nltk
import random
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import normalize
from Wass_Matcher import Wasserstein_Matcher
def load_embeddings(path, dimension=300):
"""
Loads the embeddings from a word2vec formatted file.
word2vec format is one line per word and it's associated embedding
(dimension x floating numbers) separated by spaces
The first line may or may not include the word count and dimension
"""
vectors = {}
with open(path, mode='r', encoding='utf8') as fp:
first_line = fp.readline().rstrip('\n')
if first_line.count(' ') == 1:
# includes the "word_count dimension" information
(word_count, dimension) = map(int, first_line.split())
else:
# assume the file only contains vectors
fp.seek(0)
for line in fp:
elems = line.split()
vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:])
return vectors
def clean_corpus_using_embeddings_vocabulary(
embeddings_dictionary,
corpus,
vectors,
language,
):
'''
Cleans corpus using the dictionary of embeddings.
Any word without an associated embedding in the dictionary is ignored.
Adds '__target-language' and '__source-language' at the end of the words according to their language.
'''
clean_corpus, clean_vectors, keys = [], {}, []
words_we_want = set(embeddings_dictionary)
tokenize = MosesTokenizer(language)
for key, doc in enumerate(corpus):
clean_doc = []
words = tokenize(doc)
for word in words:
if word in words_we_want:
clean_doc.append(word + '__%s' % language)
clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float)
if len(clean_doc) > 3 and len(clean_doc) < 25:
keys.append(key)
clean_corpus.append(' '.join(clean_doc))
tokenize.close()
return np.array(clean_corpus), clean_vectors, keys
def mrr_precision_at_k(golden, preds, k_list=[1,]):
"""
Calculates Mean Reciprocal Error and Hits@1 == Precision@1
"""
my_score = 0
precision_at = np.zeros(len(k_list))
for key, elem in enumerate(golden):
if elem in preds[key]:
location = np.where(preds[key]==elem)[0][0]
my_score += 1/(1+ location)
for k_index, k_value in enumerate(k_list):
if location < k_value:
precision_at[k_index] += 1
return my_score/len(golden), (precision_at/len(golden))[0]
def main(args):
numpy.seterr(divide='ignore') # POT has issues with divide by zero errors
source_lang = args.source_lang
target_lang = args.target_lang
source_vectors_filename = args.source_vector
target_vectors_filename = args.target_vector
vectors_source = load_embeddings(source_vectors_filename)
vectors_target = load_embeddings(target_vectors_filename)
source_defs_filename = args.source_defs
target_defs_filename = args.target_defs
batch = args.batch
mode = args.mode
defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')]
defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')]
clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary(
set(vectors_source.keys()),
defs_source,
vectors_source,
source_lang,
)
clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary(
set(vectors_target.keys()),
defs_target,
vectors_target,
target_lang,
)
take = args.instances
common_keys = set(src_keys).intersection(set(target_keys))
take = min(len(common_keys), take) # you can't sample more than length
experiment_keys = random.sample(common_keys, take)
instances = len(experiment_keys)
clean_src_corpus = list(clean_src_corpus[experiment_keys])
clean_target_corpus = list(clean_target_corpus[experiment_keys])
if (not batch):
print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}')
del vectors_source, vectors_target, defs_source, defs_target
vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus)
common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors]
W_common = []
for w in common:
if w in clean_src_vectors:
W_common.append(np.array(clean_src_vectors[w]))
else:
W_common.append(np.array(clean_target_vectors[w]))
if (not batch):
print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}')
W_common = np.array(W_common)
W_common = normalize(W_common)
vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None)
vect.fit(clean_src_corpus + clean_target_corpus)
X_train_idf = vect.transform(clean_src_corpus)
X_test_idf = vect.transform(clean_target_corpus)
vect_tf = CountVectorizer(vocabulary=common, dtype=np.double)
vect_tf.fit(clean_src_corpus + clean_target_corpus)
X_train_tf = vect_tf.transform(clean_src_corpus)
X_test_tf = vect_tf.transform(clean_target_corpus)
if (mode == 'wmd' or mode == 'all'):
if (not batch):
print(f'WMD - tfidf: {source_lang} - {target_lang}')
clf = Wasserstein_Matcher(W_embed=W_common, n_neighbors=5, n_jobs=14)
clf.fit(X_train_idf[:instances], np.ones(instances))
row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances)
result = zip(row_ind, col_ind)
hit_one = len([x for x,y in result if x == y])
percentage = hit_one / instances * 100
if (not batch):
print(f'{hit_one} definitions have been mapped correctly, {percentage}%')
if (batch):
import csv
fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}']
with open('wmd_matching_results.csv', 'a') as f:
writer = csv.writer(f)
writer.writerow(fields)
if (mode == 'snk' or mode == 'all'):
if (not batch):
print(f'Sinkhorn - tfidf: {source_lang} - {target_lang}')
clf = Wasserstein_Matcher(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=True)
clf.fit(X_train_idf[:instances], np.ones(instances))
row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances)
result = zip(row_ind, col_ind)
hit_one = len([x for x,y in result if x == y])
percentage = hit_one / instances * 100
if (not batch):
print(f'{hit_one} definitions have been mapped correctly, {percentage}%')
if (batch):
fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}']
with open('sinkhorn_matching_result.csv', 'a') as f:
writer = csv.writer(f)
writer.writerow(fields)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='matching using wmd and wasserstein distance')
parser.add_argument('source_lang', help='source language short name')
parser.add_argument('target_lang', help='target language short name')
parser.add_argument('source_vector', help='path of the source vector')
parser.add_argument('target_vector', help='path of the target vector')
parser.add_argument('source_defs', help='path of the source definitions')
parser.add_argument('target_defs', help='path of the target definitions')
parser.add_argument('-b', '--batch', action='store_true', help='running in batch (store results in csv) or running a single instance (output the results)')
parser.add_argument('mode', choices=['all', 'wmd', 'snk'], default='all', help='which methods to run')
parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int)
args = parser.parse_args()
main(args)
|