aboutsummaryrefslogtreecommitdiffstats
path: root/README.md
blob: 6e246a9c2d6721a11641f766134452daf6418ce6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Evaluating cross-lingual textual similarity on dictionary alignment

This repository contains the scripts to prepare the resources for the study as well as open source implementations of the methods.

## Requirements
- python3
- nltk
    ```python
    import nltk
    nltk.download('wordnet')
    ```

## Acquiring The Data

```bash
git clone https://github.com/yigitsever/Evaluating-Dictionary-Alignment.git && cd Evaluating-Dictionary-Alignment
./get_data.sh
```

This will create two directories; `dictionaries` and `wordnets`.
Linewise aligned definition files are in `wordnets/ready`.

## Acquiring The Embeddings

We use [VecMap](https://github.com/artetxem/vecmap) on [fastText](https://fasttext.cc/) embeddings.
You can skip this step if you are providing your own polylingual embeddings.
Otherwise;

* initialize and update the VecMap submodule;

```bash
git submodule init && git submodule update
```

* make sure `./get_data` is already run and `dictionaries` folder is present.

* run;

```bash
./get_embeddings.sh
```

Bear in mind that this will require around 30 GB free space.