diff options
Diffstat (limited to 'WMD_matching.py')
| -rw-r--r-- | WMD_matching.py | 151 |
1 files changed, 0 insertions, 151 deletions
diff --git a/WMD_matching.py b/WMD_matching.py deleted file mode 100644 index 69ea10e..0000000 --- a/WMD_matching.py +++ /dev/null | |||
| @@ -1,151 +0,0 @@ | |||
| 1 | import argparse | ||
| 2 | import csv | ||
| 3 | import random | ||
| 4 | |||
| 5 | import numpy as np | ||
| 6 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
| 7 | from sklearn.preprocessing import normalize | ||
| 8 | |||
| 9 | from Wasserstein_Distance import (WassersteinMatcher, | ||
| 10 | clean_corpus_using_embeddings_vocabulary, | ||
| 11 | load_embeddings) | ||
| 12 | |||
| 13 | |||
| 14 | def main(args): | ||
| 15 | |||
| 16 | np.seterr(divide="ignore") # POT has issues with divide by zero errors | ||
| 17 | source_lang = args.source_lang | ||
| 18 | target_lang = args.target_lang | ||
| 19 | |||
| 20 | source_vectors_filename = args.source_vector | ||
| 21 | target_vectors_filename = args.target_vector | ||
| 22 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 23 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 24 | |||
| 25 | source_defs_filename = args.source_defs | ||
| 26 | target_defs_filename = args.target_defs | ||
| 27 | |||
| 28 | batch = args.batch | ||
| 29 | mode = args.mode | ||
| 30 | runfor = list() | ||
| 31 | |||
| 32 | if mode == "all": | ||
| 33 | runfor.extend(["wmd", "snk"]) | ||
| 34 | else: | ||
| 35 | runfor.append(mode) | ||
| 36 | |||
| 37 | defs_source = [ | ||
| 38 | line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") | ||
| 39 | ] | ||
| 40 | defs_target = [ | ||
| 41 | line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") | ||
| 42 | ] | ||
| 43 | |||
| 44 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 45 | set(vectors_source.keys()), defs_source, vectors_source, source_lang | ||
| 46 | ) | ||
| 47 | |||
| 48 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 49 | set(vectors_target.keys()), defs_target, vectors_target, target_lang | ||
| 50 | ) | ||
| 51 | |||
| 52 | take = args.instances | ||
| 53 | |||
| 54 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
| 55 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 56 | experiment_keys = random.sample(common_keys, take) | ||
| 57 | |||
| 58 | instances = len(experiment_keys) | ||
| 59 | |||
| 60 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
| 61 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
| 62 | |||
| 63 | if not batch: | ||
| 64 | print( | ||
| 65 | f"{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}" | ||
| 66 | ) | ||
| 67 | |||
| 68 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 69 | |||
| 70 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
| 71 | common = [ | ||
| 72 | word | ||
| 73 | for word in vec.get_feature_names() | ||
| 74 | if word in clean_src_vectors or word in clean_target_vectors | ||
| 75 | ] | ||
| 76 | W_common = [] | ||
| 77 | for w in common: | ||
| 78 | if w in clean_src_vectors: | ||
| 79 | W_common.append(np.array(clean_src_vectors[w])) | ||
| 80 | else: | ||
| 81 | W_common.append(np.array(clean_target_vectors[w])) | ||
| 82 | |||
| 83 | if not batch: | ||
| 84 | print(f"{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}") | ||
| 85 | |||
| 86 | W_common = np.array(W_common) | ||
| 87 | W_common = normalize(W_common) | ||
| 88 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) | ||
| 89 | vect.fit(clean_src_corpus + clean_target_corpus) | ||
| 90 | X_train_idf = vect.transform(clean_src_corpus) | ||
| 91 | X_test_idf = vect.transform(clean_target_corpus) | ||
| 92 | |||
| 93 | for metric in runfor: | ||
| 94 | if not batch: | ||
| 95 | print(f"{metric}: {source_lang} - {target_lang}") | ||
| 96 | |||
| 97 | clf = WassersteinMatcher( | ||
| 98 | W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == "snk") | ||
| 99 | ) | ||
| 100 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 101 | p_at_one, percentage = clf.align(X_test_idf[:instances], n_neighbors=instances) | ||
| 102 | |||
| 103 | if not batch: | ||
| 104 | print(f"P @ 1: {p_at_one}\ninstances: {instances}\n{percentage}%") | ||
| 105 | else: | ||
| 106 | fields = [ | ||
| 107 | f"{source_lang}", | ||
| 108 | f"{target_lang}", | ||
| 109 | f"{instances}", | ||
| 110 | f"{p_at_one}", | ||
| 111 | f"{percentage}", | ||
| 112 | ] | ||
| 113 | with open(f"{metric}_matching_results.csv", "a") as f: | ||
| 114 | writer = csv.writer(f) | ||
| 115 | writer.writerow(fields) | ||
| 116 | |||
| 117 | |||
| 118 | if __name__ == "__main__": | ||
| 119 | |||
| 120 | parser = argparse.ArgumentParser( | ||
| 121 | description="matching using wmd and wasserstein distance" | ||
| 122 | ) | ||
| 123 | parser.add_argument("source_lang", help="source language short name") | ||
| 124 | parser.add_argument("target_lang", help="target language short name") | ||
| 125 | parser.add_argument("source_vector", help="path of the source vector") | ||
| 126 | parser.add_argument("target_vector", help="path of the target vector") | ||
| 127 | parser.add_argument("source_defs", help="path of the source definitions") | ||
| 128 | parser.add_argument("target_defs", help="path of the target definitions") | ||
| 129 | parser.add_argument( | ||
| 130 | "-b", | ||
| 131 | "--batch", | ||
| 132 | action="store_true", | ||
| 133 | help="running in batch (store results in csv) or running a single instance (output the results)", | ||
| 134 | ) | ||
| 135 | parser.add_argument( | ||
| 136 | "mode", | ||
| 137 | choices=["all", "wmd", "snk"], | ||
| 138 | default="all", | ||
| 139 | help="which methods to run", | ||
| 140 | ) | ||
| 141 | parser.add_argument( | ||
| 142 | "-n", | ||
| 143 | "--instances", | ||
| 144 | help="number of instances in each language to retrieve", | ||
| 145 | default=1000, | ||
| 146 | type=int, | ||
| 147 | ) | ||
| 148 | |||
| 149 | args = parser.parse_args() | ||
| 150 | |||
| 151 | main(args) | ||
