diff options
Diffstat (limited to 'Helpers.py')
-rw-r--r-- | Helpers.py | 157 |
1 files changed, 157 insertions, 0 deletions
diff --git a/Helpers.py b/Helpers.py new file mode 100644 index 0000000..7c615ab --- /dev/null +++ b/Helpers.py | |||
@@ -0,0 +1,157 @@ | |||
1 | import itertools | ||
2 | |||
3 | import numpy as np | ||
4 | from sklearn.model_selection import train_test_split as split_data | ||
5 | |||
6 | import pandas as pd | ||
7 | from gensim.models import KeyedVectors | ||
8 | from keras.preprocessing.sequence import pad_sequences | ||
9 | |||
10 | |||
11 | class Data(object): | ||
12 | def __init__( | ||
13 | self, | ||
14 | source_lang, | ||
15 | target_lang, | ||
16 | data_file, | ||
17 | max_len=None, | ||
18 | instances=1000, | ||
19 | vocab_limit=None, | ||
20 | sentence_cols=None, | ||
21 | score_col=None, | ||
22 | ): | ||
23 | self.source_lang = source_lang | ||
24 | self.target_lang = target_lang | ||
25 | self.data_file = data_file | ||
26 | self.max_len = max_len | ||
27 | self.instances = instances | ||
28 | self.vocab_size = 1 | ||
29 | self.vocab_limit = vocab_limit | ||
30 | |||
31 | if sentence_cols is None: | ||
32 | self.sequence_cols = [ | ||
33 | f"{source_lang} definition", | ||
34 | f"{target_lang} definition", | ||
35 | ] | ||
36 | else: | ||
37 | self.sequence_cols = sentence_cols | ||
38 | |||
39 | if score_col is None: | ||
40 | self.score_col = "is same" | ||
41 | else: | ||
42 | self.score_col = score_col | ||
43 | |||
44 | self.x_train = list() | ||
45 | self.y_train = list() | ||
46 | self.x_val = list() | ||
47 | self.y_val = list() | ||
48 | self.vocab = set("PAD") | ||
49 | self.word_to_id = {"PAD": 0} | ||
50 | self.id_to_word = {0: "PAD"} | ||
51 | self.word_to_count = dict() | ||
52 | self.run() | ||
53 | |||
54 | def text_to_word_list(self, text): | ||
55 | """ Pre process and convert texts to a list of words """ | ||
56 | text = str(text) | ||
57 | text = text.split() | ||
58 | return text | ||
59 | |||
60 | def load_data(self): | ||
61 | # Load data set | ||
62 | data_df = pd.read_csv(self.data_file, sep="\t") | ||
63 | |||
64 | # Iterate over required sequences of provided dataset | ||
65 | for index, row in data_df.iterrows(): | ||
66 | # Iterate through the text of both questions of the row | ||
67 | for sequence in self.sequence_cols: | ||
68 | s2n = [] # Sequences with words replaces with indices | ||
69 | for word in self.text_to_word_list(row[sequence]): | ||
70 | if word not in self.vocab: | ||
71 | self.vocab.add(word) | ||
72 | self.word_to_id[word] = self.vocab_size | ||
73 | self.word_to_count[word] = 1 | ||
74 | s2n.append(self.vocab_size) | ||
75 | self.id_to_word[self.vocab_size] = word | ||
76 | self.vocab_size += 1 | ||
77 | else: | ||
78 | self.word_to_count[word] += 1 | ||
79 | s2n.append(self.word_to_id[word]) | ||
80 | |||
81 | # Replace |sequence as word| with |sequence as number| representation | ||
82 | data_df.at[index, sequence] = s2n | ||
83 | return data_df | ||
84 | |||
85 | def pad_sequences(self): | ||
86 | if self.max_len == 0: | ||
87 | self.max_len = max( | ||
88 | max(len(seq) for seq in self.x_train[0]), | ||
89 | max(len(seq) for seq in self.x_train[1]), | ||
90 | max(len(seq) for seq in self.x_val[0]), | ||
91 | max(len(seq) for seq in self.x_val[1]), | ||
92 | ) | ||
93 | |||
94 | # Zero padding | ||
95 | for dataset, side in itertools.product([self.x_train, self.x_val], [0, 1]): | ||
96 | if self.max_len: | ||
97 | dataset[side] = pad_sequences(dataset[side], maxlen=self.max_len) | ||
98 | else: | ||
99 | dataset[side] = pad_sequences(dataset[side]) | ||
100 | |||
101 | def run(self): | ||
102 | # Loading data and building vocabulary. | ||
103 | data_df = self.load_data() | ||
104 | |||
105 | X = data_df[self.sequence_cols] | ||
106 | Y = data_df[self.score_col] | ||
107 | |||
108 | self.x_train, self.x_val, self.y_train, self.y_val = split_data( | ||
109 | X, Y, test_size=self.instances, shuffle=False | ||
110 | ) | ||
111 | |||
112 | # Split to lists | ||
113 | self.x_train = [self.x_train[column] for column in self.sequence_cols] | ||
114 | self.x_val = [self.x_val[column] for column in self.sequence_cols] | ||
115 | |||
116 | # Convert labels to their numpy representations | ||
117 | self.y_train = self.y_train.values | ||
118 | self.y_val = self.y_val.values | ||
119 | |||
120 | # Padding Sequences. | ||
121 | self.pad_sequences() | ||
122 | |||
123 | |||
124 | class Get_Embedding(object): | ||
125 | def __init__(self, source_lang, target_lang, source_emb, target_emb, word_index): | ||
126 | self.embedding_size = 300 # Default dimensionality | ||
127 | self.embedding_matrix = self.create_embed_matrix( | ||
128 | source_lang, target_lang, source_emb, target_emb, word_index | ||
129 | ) | ||
130 | |||
131 | def create_embed_matrix( | ||
132 | self, source_lang, target_lang, source_emb, target_emb, word_index | ||
133 | ): | ||
134 | source_vecs = KeyedVectors.load_word2vec_format(source_emb) | ||
135 | target_vecs = KeyedVectors.load_word2vec_format(target_emb) | ||
136 | |||
137 | # Prepare Embedding Matrix. | ||
138 | embedding_matrix = np.zeros((len(word_index) + 1, self.embedding_size)) | ||
139 | |||
140 | # word has either __source or __target appended | ||
141 | for key, i in word_index.items(): | ||
142 | if "__" not in key: | ||
143 | print("Skipping {}".format(key)) | ||
144 | continue | ||
145 | |||
146 | word, lang = key.split("__") | ||
147 | |||
148 | if lang == source_lang: | ||
149 | if word in source_vecs.vocab: | ||
150 | embedding_matrix[i] = source_vecs.word_vec(word) | ||
151 | else: | ||
152 | if word in target_vecs.vocab: | ||
153 | embedding_matrix[i] = target_vecs.word_vec(word) | ||
154 | |||
155 | del source_vecs | ||
156 | del target_vecs | ||
157 | return embedding_matrix | ||