diff options
| -rw-r--r-- | WMD_matching.py | 1 | ||||
| -rw-r--r-- | WMD_retrieval.py | 334 |
2 files changed, 101 insertions, 234 deletions
diff --git a/WMD_matching.py b/WMD_matching.py index 2316a10..8a97389 100644 --- a/WMD_matching.py +++ b/WMD_matching.py | |||
| @@ -22,6 +22,7 @@ def main(args): | |||
| 22 | 22 | ||
| 23 | batch = args.batch | 23 | batch = args.batch |
| 24 | mode = args.mode | 24 | mode = args.mode |
| 25 | |||
| 25 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | 26 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] |
| 26 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | 27 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] |
| 27 | 28 | ||
diff --git a/WMD_retrieval.py b/WMD_retrieval.py index f99eaa1..b49ba7d 100644 --- a/WMD_retrieval.py +++ b/WMD_retrieval.py | |||
| @@ -1,259 +1,125 @@ | |||
| 1 | ########################### | ||
| 2 | # Wasserstein Retrieval # | ||
| 3 | ########################### | ||
| 4 | import argparse | 1 | import argparse |
| 5 | |||
| 6 | parser = argparse.ArgumentParser(description='run retrieval using wmd and wasserstein distances') | ||
| 7 | parser.add_argument('source_lang', help='source language short name') | ||
| 8 | parser.add_argument('target_lang', help='target language short name') | ||
| 9 | parser.add_argument('source_vector', help='path of the source vector') | ||
| 10 | parser.add_argument('target_vector', help='path of the target vector') | ||
| 11 | parser.add_argument('source_defs', help='path of the source definitions') | ||
| 12 | parser.add_argument('target_defs', help='path of the target definitions') | ||
| 13 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
| 14 | |||
| 15 | args = parser.parse_args() | ||
| 16 | |||
| 17 | source_lang = args.source_lang | ||
| 18 | target_lang = args.target_lang | ||
| 19 | |||
| 20 | def load_embeddings(path, dimension=300): | ||
| 21 | """ | ||
| 22 | Loads the embeddings from a word2vec formatted file. | ||
| 23 | word2vec format is one line per word and it's associated embedding | ||
| 24 | (dimension x floating numbers) separated by spaces | ||
| 25 | The first line may or may not include the word count and dimension | ||
| 26 | """ | ||
| 27 | vectors = {} | ||
| 28 | with open(path, mode='r', encoding='utf8') as fp: | ||
| 29 | first_line = fp.readline().rstrip('\n') | ||
| 30 | if first_line.count(' ') == 1: | ||
| 31 | # includes the "word_count dimension" information | ||
| 32 | (word_count, dimension) = map(int, first_line.split()) | ||
| 33 | else: # assume the file only contains vectors | ||
| 34 | fp.seek(0) | ||
| 35 | for line in fp: | ||
| 36 | elems = line.split() | ||
| 37 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
| 38 | return vectors | ||
| 39 | |||
| 40 | ####################################################################### | ||
| 41 | # Vectors Load Here # | ||
| 42 | ####################################################################### | ||
| 43 | |||
| 44 | source_vectors_filename = args.source_vector | ||
| 45 | target_vectors_filename = args.target_vector | ||
| 46 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 47 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 48 | |||
| 49 | ####################################################################### | ||
| 50 | # Corpora Load Here # | ||
| 51 | ####################################################################### | ||
| 52 | source_defs_filename = args.source_defs | ||
| 53 | target_defs_filename = args.target_defs | ||
| 54 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | ||
| 55 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
| 56 | |||
| 57 | import numpy as np | 2 | import numpy as np |
| 58 | from mosestokenizer import * | ||
| 59 | |||
| 60 | def clean_corpus_using_embeddings_vocabulary( | ||
| 61 | embeddings_dictionary, | ||
| 62 | corpus, | ||
| 63 | vectors, | ||
| 64 | language, | ||
| 65 | ): | ||
| 66 | ''' | ||
| 67 | Cleans corpus using the dictionary of embeddings. | ||
| 68 | Any word without an associated embedding in the dictionary is ignored. | ||
| 69 | Adds '__target-language' and '__source-language' at the end of the words according to their language. | ||
| 70 | ''' | ||
| 71 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
| 72 | words_we_want = set(embeddings_dictionary) | ||
| 73 | tokenize = MosesTokenizer(language) | ||
| 74 | for key, doc in enumerate(corpus): | ||
| 75 | clean_doc = [] | ||
| 76 | words = tokenize(doc) | ||
| 77 | for word in words: | ||
| 78 | if word in words_we_want: | ||
| 79 | clean_doc.append(word + '__%s' % language) | ||
| 80 | clean_vectors[word + '__%s' % language] = np.array(vectors[word].split()).astype(np.float) | ||
| 81 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
| 82 | keys.append(key) | ||
| 83 | clean_corpus.append(' '.join(clean_doc)) | ||
| 84 | tokenize.close() | ||
| 85 | return np.array(clean_corpus), clean_vectors, keys | ||
| 86 | |||
| 87 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 88 | set(vectors_source.keys()), | ||
| 89 | defs_source, | ||
| 90 | vectors_source, | ||
| 91 | source_lang, | ||
| 92 | ) | ||
| 93 | |||
| 94 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 95 | set(vectors_target.keys()), | ||
| 96 | defs_target, | ||
| 97 | vectors_target, | ||
| 98 | target_lang, | ||
| 99 | ) | ||
| 100 | |||
| 101 | # Here is the part Wasserstein prunes two corporas to 500 articles each | ||
| 102 | # Our dataset does not have that luxury (turns out it's not a luxury but a necessity) | ||
| 103 | |||
| 104 | import random | 3 | import random |
| 105 | take = args.instances | 4 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer |
| 5 | from sklearn.preprocessing import normalize | ||
| 6 | from Wasserstein_Distance import Wasserstein_Retriever | ||
| 7 | from Wasserstein_Distance import load_embeddings, clean_corpus_using_embeddings_vocabulary, mrr_precision_at_k | ||
| 8 | import csv | ||
| 9 | import sys | ||
| 106 | 10 | ||
| 107 | common_keys = set(src_keys).intersection(set(target_keys)) | 11 | def main(args): |
| 108 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 109 | experiment_keys = random.sample(common_keys, take) | ||
| 110 | 12 | ||
| 111 | instances = len(experiment_keys) | 13 | np.seterr(divide='ignore') # POT has issues with divide by zero errors |
| 14 | source_lang = args.source_lang | ||
| 15 | target_lang = args.target_lang | ||
| 112 | 16 | ||
| 113 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | 17 | source_vectors_filename = args.source_vector |
| 114 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | 18 | target_vectors_filename = args.target_vector |
| 19 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 20 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 115 | 21 | ||
| 116 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | 22 | source_defs_filename = args.source_defs |
| 23 | target_defs_filename = args.target_defs | ||
| 117 | 24 | ||
| 118 | del vectors_source, vectors_target, defs_source, defs_target | 25 | batch = args.batch |
| 26 | mode = args.mode | ||
| 27 | runfor = list() | ||
| 119 | 28 | ||
| 120 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | 29 | if (mode == 'all'): |
| 121 | 30 | runfor.extend(['wmd','snk']) | |
| 122 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
| 123 | common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors] | ||
| 124 | W_common = [] | ||
| 125 | for w in common: | ||
| 126 | if w in clean_src_vectors: | ||
| 127 | W_common.append(np.array(clean_src_vectors[w])) | ||
| 128 | else: | 31 | else: |
| 129 | W_common.append(np.array(clean_target_vectors[w])) | 32 | runfor.append(mode) |
| 130 | 33 | ||
| 131 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | 34 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] |
| 35 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
| 132 | 36 | ||
| 133 | from sklearn.preprocessing import normalize | 37 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( |
| 134 | W_common = np.array(W_common) | 38 | set(vectors_source.keys()), |
| 135 | W_common = normalize(W_common) | 39 | defs_source, |
| 136 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) | 40 | vectors_source, |
| 137 | vect.fit(clean_src_corpus + clean_target_corpus) | 41 | source_lang, |
| 138 | X_train_idf = vect.transform(clean_src_corpus) | 42 | ) |
| 139 | X_test_idf = vect.transform(clean_target_corpus) | ||
| 140 | 43 | ||
| 141 | vect_tf = CountVectorizer(vocabulary=common, dtype=np.double) | 44 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( |
| 142 | vect_tf.fit(clean_src_corpus + clean_target_corpus) | 45 | set(vectors_target.keys()), |
| 143 | X_train_tf = vect_tf.transform(clean_src_corpus) | 46 | defs_target, |
| 144 | X_test_tf = vect_tf.transform(clean_target_corpus) | 47 | vectors_target, |
| 48 | target_lang, | ||
| 49 | ) | ||
| 145 | 50 | ||
| 146 | import ot | 51 | take = args.instances |
| 147 | from sklearn.neighbors import KNeighborsClassifier | ||
| 148 | from sklearn.metrics import euclidean_distances | ||
| 149 | from sklearn.externals.joblib import Parallel, delayed | ||
| 150 | from sklearn.utils import check_array | ||
| 151 | from sklearn.metrics.scorer import check_scoring | ||
| 152 | from pathos.multiprocessing import ProcessingPool as Pool | ||
| 153 | from sklearn.metrics import euclidean_distances | ||
| 154 | 52 | ||
| 155 | class WassersteinDistances(KNeighborsClassifier): | 53 | common_keys = set(src_keys).intersection(set(target_keys)) |
| 156 | """ | 54 | take = min(len(common_keys), take) # you can't sample more than length |
| 157 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | 55 | experiment_keys = random.sample(common_keys, take) |
| 158 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | ||
| 159 | Wasserstein is parametrized by the distances between the individual points of the distributions. | ||
| 160 | In this work, we propose to use cross-lingual embeddings for calculating these distances. | ||
| 161 | 56 | ||
| 162 | """ | 57 | instances = len(experiment_keys) |
| 163 | def __init__(self, W_embed, n_neighbors=1, n_jobs=1, verbose=False, sinkhorn= False, sinkhorn_reg=0.1): | ||
| 164 | """ | ||
| 165 | Initialization of the class. | ||
| 166 | Arguments | ||
| 167 | --------- | ||
| 168 | W_embed: embeddings of the words, np.array | ||
| 169 | verbose: True/False | ||
| 170 | """ | ||
| 171 | self.sinkhorn = sinkhorn | ||
| 172 | self.sinkhorn_reg = sinkhorn_reg | ||
| 173 | self.W_embed = W_embed | ||
| 174 | self.verbose = verbose | ||
| 175 | super(WassersteinDistances, self).__init__(n_neighbors=n_neighbors, n_jobs=n_jobs, metric='precomputed', algorithm='brute') | ||
| 176 | 58 | ||
| 177 | def _wmd(self, i, row, X_train): | 59 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) |
| 178 | union_idx = np.union1d(X_train[i].indices, row.indices) | 60 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) |
| 179 | W_minimal = self.W_embed[union_idx] | ||
| 180 | W_dist = euclidean_distances(W_minimal) | ||
| 181 | bow_i = X_train[i, union_idx].A.ravel() | ||
| 182 | bow_j = row[:, union_idx].A.ravel() | ||
| 183 | if self.sinkhorn: | ||
| 184 | return ot.sinkhorn2(bow_i, bow_j, W_dist, self.sinkhorn_reg, numItermax=50, method='sinkhorn_stabilized',)[0] | ||
| 185 | else: | ||
| 186 | return ot.emd2(bow_i, bow_j, W_dist) | ||
| 187 | 61 | ||
| 188 | def _wmd_row(self, row): | 62 | if (not batch): |
| 189 | X_train = self._fit_X | 63 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') |
| 190 | n_samples_train = X_train.shape[0] | ||
| 191 | return [self._wmd(i, row, X_train) for i in range(n_samples_train)] | ||
| 192 | 64 | ||
| 193 | def _pairwise_wmd(self, X_test, X_train=None): | 65 | del vectors_source, vectors_target, defs_source, defs_target |
| 194 | n_samples_test = X_test.shape[0] | ||
| 195 | 66 | ||
| 196 | if X_train is None: | 67 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) |
| 197 | X_train = self._fit_X | 68 | common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors] |
| 198 | pool = Pool(nodes=self.n_jobs) # Parallelization of the calculation of the distances | 69 | W_common = [] |
| 199 | dist = pool.map(self._wmd_row, X_test) | 70 | for w in common: |
| 200 | return np.array(dist) | 71 | if w in clean_src_vectors: |
| 201 | 72 | W_common.append(np.array(clean_src_vectors[w])) | |
| 202 | def fit(self, X, y): | 73 | else: |
| 203 | X = check_array(X, accept_sparse='csr', copy=True) | 74 | W_common.append(np.array(clean_target_vectors[w])) |
| 204 | X = normalize(X, norm='l1', copy=False) | 75 | |
| 205 | return super(WassersteinDistances, self).fit(X, y) | 76 | if (not batch): |
| 206 | 77 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | |
| 207 | def predict(self, X): | 78 | |
| 208 | X = check_array(X, accept_sparse='csr', copy=True) | 79 | W_common = np.array(W_common) |
| 209 | X = normalize(X, norm='l1', copy=False) | 80 | W_common = normalize(W_common) |
| 210 | dist = self._pairwise_wmd(X) | 81 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) |
| 211 | return super(WassersteinDistances, self).predict(dist) | 82 | vect.fit(clean_src_corpus + clean_target_corpus) |
| 212 | 83 | X_train_idf = vect.transform(clean_src_corpus) | |
| 213 | def kneighbors(self, X, n_neighbors=1): | 84 | X_test_idf = vect.transform(clean_target_corpus) |
| 214 | X = check_array(X, accept_sparse='csr', copy=True) | 85 | |
| 215 | X = normalize(X, norm='l1', copy=False) | 86 | vect_tf = CountVectorizer(vocabulary=common, dtype=np.double) |
| 216 | dist = self._pairwise_wmd(X) | 87 | vect_tf.fit(clean_src_corpus + clean_target_corpus) |
| 217 | return super(WassersteinDistances, self).kneighbors(dist, n_neighbors) | 88 | X_train_tf = vect_tf.transform(clean_src_corpus) |
| 89 | X_test_tf = vect_tf.transform(clean_target_corpus) | ||
| 90 | |||
| 91 | for metric in runfor: | ||
| 92 | if (not batch): | ||
| 93 | print(f'{metric} - tfidf: {source_lang} - {target_lang}') | ||
| 94 | |||
| 95 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == 'snk')) | ||
| 96 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 97 | dist, preds = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
| 98 | mrr, p_at_1 = mrr_precision_at_k(list(range(len(preds))), preds) | ||
| 99 | percentage = p_at_1 * 100 | ||
| 100 | |||
| 101 | if (not batch): | ||
| 102 | print(f'MRR: {mrr} | Precision @ 1: {p_at_1}') | ||
| 103 | else: | ||
| 104 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{mrr}', f'{p_at_1}', f'{percentage}'] | ||
| 105 | with open(f'{metric}_retrieval_result.csv', 'a') as f: | ||
| 106 | writer = csv.writer(f) | ||
| 107 | writer.writerow(fields) | ||
| 218 | 108 | ||
| 219 | def mrr_precision_at_k(golden, preds, k_list=[1,]): | ||
| 220 | """ | ||
| 221 | Calculates Mean Reciprocal Error and Hits@1 == Precision@1 | ||
| 222 | """ | ||
| 223 | my_score = 0 | ||
| 224 | precision_at = np.zeros(len(k_list)) | ||
| 225 | for key, elem in enumerate(golden): | ||
| 226 | if elem in preds[key]: | ||
| 227 | location = np.where(preds[key]==elem)[0][0] | ||
| 228 | my_score += 1/(1+ location) | ||
| 229 | for k_index, k_value in enumerate(k_list): | ||
| 230 | if location < k_value: | ||
| 231 | precision_at[k_index] += 1 | ||
| 232 | return my_score/len(golden), (precision_at/len(golden))[0] | ||
| 233 | 109 | ||
| 234 | print(f'WMD - tfidf: {source_lang} - {target_lang}') | 110 | if __name__ == "__main__": |
| 235 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14) | ||
| 236 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 237 | dist, preds = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
| 238 | mrr, p_at_1 = mrr_precision_at_k(list(range(len(preds))), preds) | ||
| 239 | print(f'MRR: {mrr} | Precision @ 1: {p_at_1}') | ||
| 240 | 111 | ||
| 241 | import csv | 112 | parser = argparse.ArgumentParser(description='run retrieval using wmd or snk') |
| 242 | percentage = p_at_1 * 100 | 113 | parser.add_argument('source_lang', help='source language short name') |
| 243 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{mrr}', f'{p_at_1}', f'{percentage}'] | 114 | parser.add_argument('target_lang', help='target language short name') |
| 244 | with open('/home/syigit/multilang_results/wmd_retrieval_result.csv', 'a') as f: | 115 | parser.add_argument('source_vector', help='path of the source vector') |
| 245 | writer = csv.writer(f) | 116 | parser.add_argument('target_vector', help='path of the target vector') |
| 246 | writer.writerow(fields) | 117 | parser.add_argument('source_defs', help='path of the source definitions') |
| 118 | parser.add_argument('target_defs', help='path of the target definitions') | ||
| 119 | parser.add_argument('-b', '--batch', action='store_true', help='running in batch (store results in csv) or running a single instance (output the results)') | ||
| 120 | parser.add_argument('mode', choices=['all', 'wmd', 'snk'], default='all', help='which methods to run') | ||
| 121 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
| 247 | 122 | ||
| 248 | print(f'Sinkhorn - tfidf: {source_lang} - {target_lang}') | 123 | args = parser.parse_args() |
| 249 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=True) | ||
| 250 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 251 | dist, preds = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
| 252 | mrr, p_at_1 = mrr_precision_at_k(list(range(len(preds))), preds) | ||
| 253 | print(f'MRR: {mrr} | Precision @ 1: {p_at_1}') | ||
| 254 | 124 | ||
| 255 | percentage = p_at_1 * 100 | 125 | main(args) |
| 256 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{mrr}', f'{p_at_1}', f'{percentage}'] | ||
| 257 | with open('/home/syigit/multilang_results/sinkhorn_retrieval_result.csv', 'a') as f: | ||
| 258 | writer = csv.writer(f) | ||
| 259 | writer.writerow(fields) | ||
