diff options
| author | Yigit Sever | 2019-09-21 15:06:32 +0300 |
|---|---|---|
| committer | Yigit Sever | 2019-09-21 15:06:32 +0300 |
| commit | 4cb6986480def9b0c91fb46e276839c60f96aa49 (patch) | |
| tree | 10953cd498f2359e0615b0ca3502a33d5cb43607 /Wasserstein_Distance.py | |
| parent | f9e15ad025f117b38cf03d3b2c75628c4202c0ed (diff) | |
| download | Evaluating-Dictionary-Alignment-4cb6986480def9b0c91fb46e276839c60f96aa49.tar.gz Evaluating-Dictionary-Alignment-4cb6986480def9b0c91fb46e276839c60f96aa49.tar.bz2 Evaluating-Dictionary-Alignment-4cb6986480def9b0c91fb46e276839c60f96aa49.zip | |
Tidy up Wasserstein classes into one file
Diffstat (limited to 'Wasserstein_Distance.py')
| -rw-r--r-- | Wasserstein_Distance.py | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/Wasserstein_Distance.py b/Wasserstein_Distance.py new file mode 100644 index 0000000..d2a6408 --- /dev/null +++ b/Wasserstein_Distance.py | |||
| @@ -0,0 +1,140 @@ | |||
| 1 | import ot | ||
| 2 | from sklearn.preprocessing import normalize | ||
| 3 | from lapjv import lapjv | ||
| 4 | from sklearn.neighbors import KNeighborsClassifier | ||
| 5 | from sklearn.metrics import euclidean_distances | ||
| 6 | from sklearn.externals.joblib import Parallel, delayed | ||
| 7 | from sklearn.utils import check_array | ||
| 8 | from sklearn.metrics.scorer import check_scoring | ||
| 9 | from pathos.multiprocessing import ProcessingPool as Pool | ||
| 10 | from sklearn.metrics import euclidean_distances | ||
| 11 | import numpy as np | ||
| 12 | |||
| 13 | class Wasserstein_Matcher(KNeighborsClassifier): | ||
| 14 | """ | ||
| 15 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | ||
| 16 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | ||
| 17 | Wasserstein is parametrized by the distances between the individual points of the distributions. | ||
| 18 | """ | ||
| 19 | def __init__(self, W_embed, n_neighbors=1, n_jobs=1, verbose=False, sinkhorn= False, sinkhorn_reg=0.1): | ||
| 20 | """ | ||
| 21 | Initialization of the class. | ||
| 22 | Arguments | ||
| 23 | --------- | ||
| 24 | W_embed: embeddings of the words, np.array | ||
| 25 | verbose: True/False | ||
| 26 | """ | ||
| 27 | self.sinkhorn = sinkhorn | ||
| 28 | self.sinkhorn_reg = sinkhorn_reg | ||
| 29 | self.W_embed = W_embed | ||
| 30 | self.verbose = verbose | ||
| 31 | super(Wasserstein_Matcher, self).__init__(n_neighbors=n_neighbors, n_jobs=n_jobs, metric='precomputed', algorithm='brute') | ||
| 32 | |||
| 33 | def _wmd(self, i, row, X_train): | ||
| 34 | union_idx = np.union1d(X_train[i].indices, row.indices) | ||
| 35 | W_minimal = self.W_embed[union_idx] | ||
| 36 | W_dist = euclidean_distances(W_minimal) | ||
| 37 | bow_i = X_train[i, union_idx].A.ravel() | ||
| 38 | bow_j = row[:, union_idx].A.ravel() | ||
| 39 | if self.sinkhorn: | ||
| 40 | return ot.sinkhorn2(bow_i, bow_j, W_dist, self.sinkhorn_reg, numItermax=50, method='sinkhorn_stabilized',)[0] | ||
| 41 | else: | ||
| 42 | return ot.emd2(bow_i, bow_j, W_dist) | ||
| 43 | |||
| 44 | def _wmd_row(self, row): | ||
| 45 | X_train = self._fit_X | ||
| 46 | n_samples_train = X_train.shape[0] | ||
| 47 | return [self._wmd(i, row, X_train) for i in range(n_samples_train)] | ||
| 48 | |||
| 49 | def _pairwise_wmd(self, X_test, X_train=None): | ||
| 50 | n_samples_test = X_test.shape[0] | ||
| 51 | |||
| 52 | if X_train is None: | ||
| 53 | X_train = self._fit_X | ||
| 54 | pool = Pool(nodes=self.n_jobs) # Parallelization of the calculation of the distances | ||
| 55 | dist = pool.map(self._wmd_row, X_test) | ||
| 56 | return np.array(dist) | ||
| 57 | |||
| 58 | def fit(self, X, y): # X_train_idf | ||
| 59 | X = check_array(X, accept_sparse='csr', copy=True) # check if array is sparse | ||
| 60 | X = normalize(X, norm='l1', copy=False) | ||
| 61 | return super(Wasserstein_Matcher, self).fit(X, y) # X_train_idf, np_ones(document collection size) | ||
| 62 | |||
| 63 | def predict(self, X): | ||
| 64 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 65 | X = normalize(X, norm='l1', copy=False) | ||
| 66 | dist = self._pairwise_wmd(X) | ||
| 67 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | ||
| 68 | return super(Wasserstein_Matcher, self).predict(dist) | ||
| 69 | |||
| 70 | def kneighbors(self, X, n_neighbors=1): # X : X_train_idf | ||
| 71 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 72 | X = normalize(X, norm='l1', copy=False) | ||
| 73 | dist = self._pairwise_wmd(X) | ||
| 74 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | ||
| 75 | return lapjv(dist) # and here is the matching part | ||
| 76 | |||
| 77 | |||
| 78 | class Wasserstein_Retriever(KNeighborsClassifier): | ||
| 79 | """ | ||
| 80 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | ||
| 81 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | ||
| 82 | Wasserstein is parametrized by the distances between the individual points of the distributions. | ||
| 83 | """ | ||
| 84 | def __init__(self, W_embed, n_neighbors=1, n_jobs=1, verbose=False, sinkhorn= False, sinkhorn_reg=0.1): | ||
| 85 | """ | ||
| 86 | Initialization of the class. | ||
| 87 | Arguments | ||
| 88 | --------- | ||
| 89 | W_embed: embeddings of the words, np.array | ||
| 90 | verbose: True/False | ||
| 91 | """ | ||
| 92 | self.sinkhorn = sinkhorn | ||
| 93 | self.sinkhorn_reg = sinkhorn_reg | ||
| 94 | self.W_embed = W_embed | ||
| 95 | self.verbose = verbose | ||
| 96 | super(Wasserstein_Retriever, self).__init__(n_neighbors=n_neighbors, n_jobs=n_jobs, metric='precomputed', algorithm='brute') | ||
| 97 | |||
| 98 | def _wmd(self, i, row, X_train): | ||
| 99 | union_idx = np.union1d(X_train[i].indices, row.indices) | ||
| 100 | W_minimal = self.W_embed[union_idx] | ||
| 101 | W_dist = euclidean_distances(W_minimal) | ||
| 102 | bow_i = X_train[i, union_idx].A.ravel() | ||
| 103 | bow_j = row[:, union_idx].A.ravel() | ||
| 104 | if self.sinkhorn: | ||
| 105 | return ot.sinkhorn2(bow_i, bow_j, W_dist, self.sinkhorn_reg, numItermax=50, method='sinkhorn_stabilized',)[0] | ||
| 106 | else: | ||
| 107 | return ot.emd2(bow_i, bow_j, W_dist) | ||
| 108 | |||
| 109 | def _wmd_row(self, row): | ||
| 110 | X_train = self._fit_X | ||
| 111 | n_samples_train = X_train.shape[0] | ||
| 112 | return [self._wmd(i, row, X_train) for i in range(n_samples_train)] | ||
| 113 | |||
| 114 | def _pairwise_wmd(self, X_test, X_train=None): | ||
| 115 | n_samples_test = X_test.shape[0] | ||
| 116 | |||
| 117 | if X_train is None: | ||
| 118 | X_train = self._fit_X | ||
| 119 | pool = Pool(nodes=self.n_jobs) # Parallelization of the calculation of the distances | ||
| 120 | dist = pool.map(self._wmd_row, X_test) | ||
| 121 | return np.array(dist) | ||
| 122 | |||
| 123 | def fit(self, X, y): | ||
| 124 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 125 | X = normalize(X, norm='l1', copy=False) | ||
| 126 | return super(Wasserstein_Retriever, self).fit(X, y) | ||
| 127 | |||
| 128 | def predict(self, X): | ||
| 129 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 130 | X = normalize(X, norm='l1', copy=False) | ||
| 131 | dist = self._pairwise_wmd(X) | ||
| 132 | return super(Wasserstein_Retriever, self).predict(dist) | ||
| 133 | |||
| 134 | def kneighbors(self, X, n_neighbors=1): | ||
| 135 | X = check_array(X, accept_sparse='csr', copy=True) | ||
| 136 | X = normalize(X, norm='l1', copy=False) | ||
| 137 | dist = self._pairwise_wmd(X) | ||
| 138 | return super(Wasserstein_Retriever, self).kneighbors(dist, n_neighbors) | ||
| 139 | |||
| 140 | |||
