diff options
| author | Yigit Sever | 2019-09-25 14:21:44 +0300 |
|---|---|---|
| committer | Yigit Sever | 2019-09-25 14:21:44 +0300 |
| commit | c74318070ad85d5d7943e96d343aa961db305316 (patch) | |
| tree | 2669ec6ba06b4080bcd310581bd216a88387d2bc /WMD.py | |
| parent | 49c6f58e51e12af691f7a1322137c64f46043b15 (diff) | |
| download | Evaluating-Dictionary-Alignment-c74318070ad85d5d7943e96d343aa961db305316.tar.gz Evaluating-Dictionary-Alignment-c74318070ad85d5d7943e96d343aa961db305316.tar.bz2 Evaluating-Dictionary-Alignment-c74318070ad85d5d7943e96d343aa961db305316.zip | |
Merge WMD/SNK matching and retrieval
Diffstat (limited to 'WMD.py')
| -rw-r--r-- | WMD.py | 175 |
1 files changed, 175 insertions, 0 deletions
| @@ -0,0 +1,175 @@ | |||
| 1 | import argparse | ||
| 2 | import csv | ||
| 3 | import random | ||
| 4 | |||
| 5 | import numpy as np | ||
| 6 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
| 7 | from sklearn.preprocessing import normalize | ||
| 8 | |||
| 9 | from Wasserstein_Distance import (WassersteinMatcher, WassersteinRetriever, | ||
| 10 | load_embeddings, process_corpus) | ||
| 11 | |||
| 12 | |||
| 13 | def main(args): | ||
| 14 | |||
| 15 | np.seterr(divide="ignore") # POT has issues with divide by zero errors | ||
| 16 | source_lang = args.source_lang | ||
| 17 | target_lang = args.target_lang | ||
| 18 | |||
| 19 | source_vectors_filename = args.source_vector | ||
| 20 | target_vectors_filename = args.target_vector | ||
| 21 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 22 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 23 | |||
| 24 | source_defs_filename = args.source_defs | ||
| 25 | target_defs_filename = args.target_defs | ||
| 26 | |||
| 27 | batch = args.batch | ||
| 28 | input_mode = args.mode | ||
| 29 | input_paradigm = args.paradigm | ||
| 30 | |||
| 31 | run_method = list() | ||
| 32 | run_paradigm = list() | ||
| 33 | |||
| 34 | if input_paradigm == "all": | ||
| 35 | run_paradigm.extend("matching", "retrieval") | ||
| 36 | else: | ||
| 37 | run_paradigm.append(input_paradigm) | ||
| 38 | |||
| 39 | if input_mode == "all": | ||
| 40 | run_method.extend(["wmd", "snk"]) | ||
| 41 | else: | ||
| 42 | run_method.append(input_mode) | ||
| 43 | |||
| 44 | defs_source = [ | ||
| 45 | line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") | ||
| 46 | ] | ||
| 47 | defs_target = [ | ||
| 48 | line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") | ||
| 49 | ] | ||
| 50 | |||
| 51 | clean_src_corpus, clean_src_vectors, src_keys = process_corpus( | ||
| 52 | set(vectors_source.keys()), defs_source, vectors_source, source_lang | ||
| 53 | ) | ||
| 54 | |||
| 55 | clean_target_corpus, clean_target_vectors, target_keys = process_corpus( | ||
| 56 | set(vectors_target.keys()), defs_target, vectors_target, target_lang | ||
| 57 | ) | ||
| 58 | |||
| 59 | take = args.instances | ||
| 60 | |||
| 61 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
| 62 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 63 | experiment_keys = random.sample(common_keys, take) | ||
| 64 | |||
| 65 | instances = len(experiment_keys) | ||
| 66 | |||
| 67 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
| 68 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
| 69 | |||
| 70 | if not batch: | ||
| 71 | print( | ||
| 72 | f"{source_lang} - {target_lang} " | ||
| 73 | + f" document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}" | ||
| 74 | ) | ||
| 75 | |||
| 76 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 77 | |||
| 78 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
| 79 | common = [ | ||
| 80 | word | ||
| 81 | for word in vec.get_feature_names() | ||
| 82 | if word in clean_src_vectors or word in clean_target_vectors | ||
| 83 | ] | ||
| 84 | W_common = [] | ||
| 85 | for w in common: | ||
| 86 | if w in clean_src_vectors: | ||
| 87 | W_common.append(np.array(clean_src_vectors[w])) | ||
| 88 | else: | ||
| 89 | W_common.append(np.array(clean_target_vectors[w])) | ||
| 90 | |||
| 91 | if not batch: | ||
| 92 | print(f"{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}") | ||
| 93 | |||
| 94 | W_common = np.array(W_common) | ||
| 95 | W_common = normalize(W_common) | ||
| 96 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) | ||
| 97 | vect.fit(clean_src_corpus + clean_target_corpus) | ||
| 98 | X_train_idf = vect.transform(clean_src_corpus) | ||
| 99 | X_test_idf = vect.transform(clean_target_corpus) | ||
| 100 | |||
| 101 | for paradigm in run_paradigm: | ||
| 102 | WassersteinDriver = None | ||
| 103 | if paradigm == "matching": | ||
| 104 | WassersteinDriver = WassersteinMatcher | ||
| 105 | else: | ||
| 106 | WassersteinDriver = WassersteinRetriever | ||
| 107 | |||
| 108 | for metric in run_method: | ||
| 109 | if not batch: | ||
| 110 | print(f"{metric}: {source_lang} - {target_lang}") | ||
| 111 | |||
| 112 | clf = WassersteinDriver( | ||
| 113 | W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == "snk") | ||
| 114 | ) | ||
| 115 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 116 | p_at_one, percentage = clf.align( | ||
| 117 | X_test_idf[:instances], n_neighbors=instances | ||
| 118 | ) | ||
| 119 | |||
| 120 | if not batch: | ||
| 121 | print(f"P @ 1: {p_at_one}\ninstances: {instances}\n{percentage}%") | ||
| 122 | else: | ||
| 123 | fields = [ | ||
| 124 | f"{source_lang}", | ||
| 125 | f"{target_lang}", | ||
| 126 | f"{instances}", | ||
| 127 | f"{p_at_one}", | ||
| 128 | f"{percentage}", | ||
| 129 | ] | ||
| 130 | with open(f"{metric}_{paradigm}_results.csv", "a") as f: | ||
| 131 | writer = csv.writer(f) | ||
| 132 | writer.writerow(fields) | ||
| 133 | |||
| 134 | |||
| 135 | if __name__ == "__main__": | ||
| 136 | |||
| 137 | parser = argparse.ArgumentParser( | ||
| 138 | description="align dictionaries using wmd and wasserstein distance" | ||
| 139 | ) | ||
| 140 | parser.add_argument("source_lang", help="source language short name") | ||
| 141 | parser.add_argument("target_lang", help="target language short name") | ||
| 142 | parser.add_argument("source_vector", help="path of the source vector") | ||
| 143 | parser.add_argument("target_vector", help="path of the target vector") | ||
| 144 | parser.add_argument("source_defs", help="path of the source definitions") | ||
| 145 | parser.add_argument("target_defs", help="path of the target definitions") | ||
| 146 | parser.add_argument( | ||
| 147 | "-b", | ||
| 148 | "--batch", | ||
| 149 | action="store_true", | ||
| 150 | help="running in batch (store results in csv) or" | ||
| 151 | + "running a single instance (output the results)", | ||
| 152 | ) | ||
| 153 | parser.add_argument( | ||
| 154 | "mode", | ||
| 155 | choices=["all", "wmd", "snk"], | ||
| 156 | default="all", | ||
| 157 | help="which methods to run", | ||
| 158 | ) | ||
| 159 | parser.add_argument( | ||
| 160 | "paradigm", | ||
| 161 | choices=["all", "retrieval", "matching"], | ||
| 162 | default="all", | ||
| 163 | help="which paradigms to align with", | ||
| 164 | ) | ||
| 165 | parser.add_argument( | ||
| 166 | "-n", | ||
| 167 | "--instances", | ||
| 168 | help="number of instances in each language to retrieve", | ||
| 169 | default=1000, | ||
| 170 | type=int, | ||
| 171 | ) | ||
| 172 | |||
| 173 | args = parser.parse_args() | ||
| 174 | |||
| 175 | main(args) | ||
