diff options
| -rw-r--r-- | main.tex | 11 |
1 files changed, 11 insertions, 0 deletions
| @@ -639,6 +639,17 @@ Finally, $H = L = 1$ since $f(n)$ is $\Theta(n)$. Borrowing the Big-$\Theta$ not | |||
| 639 | $f(n) = n(\log n)^{2}$ | 639 | $f(n) = n(\log n)^{2}$ |
| 640 | \end{info} | 640 | \end{info} |
| 641 | 641 | ||
| 642 | \begin{align*} | ||
| 643 | n^{2} \quad v.s. \quad n(\log{n})^{2} \\ | ||
| 644 | n^{1} \quad v.s. \quad (\log{n})^{2} \\ | ||
| 645 | \sqrt{n} \quad v.s. \quad \sqrt{(\log{n})^{2}} \\ | ||
| 646 | n^{\frac{1}{2}} \quad v.s. \quad \log{n} | ||
| 647 | \end{align*} | ||
| 648 | |||
| 649 | From the lectures we know that $\log{n}$ is $\mathcal{O}(n^{d})$ for all $d$. | ||
| 650 | |||
| 651 | If $\log{n}$ is $\mathcal{O}(n^{\frac{1}{2}})$ then $n(\log{n})^{2}$ is $\mathcal{O}(n^{2})$. $H=2$. | ||
| 652 | |||
| 642 | 653 | ||
| 643 | % 1}}} % | 654 | % 1}}} % |
| 644 | 655 | ||
