aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorYigit Sever2020-11-07 04:27:52 +0300
committerYigit Sever2020-11-07 04:27:52 +0300
commitfcf4d85007dcfcbdc6220331f5f9d9ba31f6ae67 (patch)
tree0e1d5484a758ea70928b8e2ca872efbb517d0ab7
parentd7bee95a5538e10ac13dd8f91aa773e3a776bff5 (diff)
downloadhw1-fcf4d85007dcfcbdc6220331f5f9d9ba31f6ae67.tar.gz
hw1-fcf4d85007dcfcbdc6220331f5f9d9ba31f6ae67.tar.bz2
hw1-fcf4d85007dcfcbdc6220331f5f9d9ba31f6ae67.zip
Last part of the question
Only last part of 4 left
-rw-r--r--main.tex51
1 files changed, 35 insertions, 16 deletions
diff --git a/main.tex b/main.tex
index 8002998..fe20d1f 100644
--- a/main.tex
+++ b/main.tex
@@ -552,12 +552,12 @@ For the right hand side; we can start by picking $n_{0} = 1$ and $c = 1$ in the
552 552
553In order to prove the right hand side of the inequality; we can pick $c_2 > 2$ which equals; 553In order to prove the right hand side of the inequality; we can pick $c_2 > 2$ which equals;
554 554
555\begin{eqnarray*}% 555\begin{align*}%
556 \label{eq:c2gt2} 556 \label{eq:c2gt2}
557 f(n) + g(n) \le 2 \cdot f(n) \\ 557 f(n) + g(n) &\le 2 \cdot f(n) \\
558 \cancel{f(n)} + g(n) \le \cancel{2 \cdot} f(n) \\ 558 \cancel{f(n)} + g(n) &\le \cancel{2 \cdot} f(n) \\
559 g(n) \le f(n) 559 g(n) &\le f(n)
560\end{eqnarray*} 560\end{align*}
561 561
562Which we proved above using Equation~\ref{eq:a_little_o}. This conjecture is \emph{true}. 562Which we proved above using Equation~\ref{eq:a_little_o}. This conjecture is \emph{true}.
563 563
@@ -589,8 +589,7 @@ Which we proved above using Equation~\ref{eq:a_little_o}. This conjecture is \em
589 589
590Hence $f(n) = \mathcal{O}(n^{2})$ and $H=2$. 590Hence $f(n) = \mathcal{O}(n^{2})$ and $H=2$.
591 591
592% TODO: reread proof, strengthen? <06-11-20, yigit> % 592(2) $L=2$. We can pick the constant $c = \frac{1}{2}$ and write the Big-$\Omega$ notation;
593(2)$L=2$. We can pick the constant $c = \frac{1}{2}$ and write the Big-$\Omega$ notation;
594 593
595\begin{gather*} 594\begin{gather*}
596 c > 0 ~ \text{and} ~ n_{0} \ge 0 \\ 595 c > 0 ~ \text{and} ~ n_{0} \ge 0 \\
@@ -601,21 +600,41 @@ Hence $f(n) = \mathcal{O}(n^{2})$ and $H=2$.
601 600
602Does a $L>2$ work? Pick any $\ell > 2$; 601Does a $L>2$ work? Pick any $\ell > 2$;
603 602
604\begin{gather*} 603\begin{align*}
605 c > 0 ~ \text{and} ~ n_{0} \ge 0 \\ 604 c > 0 ~ \text{and} ~ n_{0} &\ge 0 \\
606 \frac{n(n+1)}{2} \ge \frac{1}{2} n^{\ell} \\ 605 \frac{n(n+1)}{2} &\ge \frac{1}{2} n^{\ell} \\
607 \frac{n(n+1)}{\cancel{2}} \ge \frac{1}{\cancel{2}} n^{\ell} \\ 606 \frac{n(n+1)}{\cancel{2}} &\ge \frac{1}{\cancel{2}} n^{\ell} \\
608 n(n+1) \ge n^{\ell} \\ 607 n(n+1) &\ge n^{\ell} \\
609 n+1 \ge n^{\ell - 1} \\ 608 n+1 &\ge n^{\ell - 1} \\
610 1 \ge n(n^{\ell - 2} - 1) 609 1 &\ge n(n^{\ell - 2} - 1)
611\end{gather*} 610\end{align*}
612 611
613The final equation does not hold $n>1$ so $L>2$ cannot be true. 612The final equation does not hold for $n>1$ or the assumed $\ell > 2$ so $L>2$ cannot be true.
614 613
615\begin{info}[] 614\begin{info}[]
616 $f(n) = \sum^{\lceil{\log{n}}\rceil}_{k=0} \frac{n}{2^{k}}$ 615 $f(n) = \sum^{\lceil{\log{n}}\rceil}_{k=0} \frac{n}{2^{k}}$
617\end{info} 616\end{info}
618 617
618It's beneficial to unpack the infinite sum beforehand;
619
620\begin{align*}
621 f(n) &= \sum^{\lceil{\log{n}}\rceil}_{k=0} \frac{n}{2^{k}}\\
622 &= \frac{n}{2^{0}} + \frac{n}{2^{1}} + \frac{n}{2^{2}} + \dots + \frac{n}{2^{\lceil{\log{n}}\rceil}} \\
623 &= n \Big(1 + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{\lceil{\log{n}}\rceil}} \Big) \\
624\end{align*}
625
626The infinite sum approaches 1 as $\lceil{\log n\rceil} \rightarrow \infty$, giving us;
627
628\begin{equation*}
629 f(n) = 2 \cdot n \\
630\end{equation*}
631
632Finally, $H = L = 1$ since $f(n)$ is $\Theta(n)$. Borrowing the Big-$\Theta$ notation from Equation~\ref{eq:a_big_theta} for $c_1 = 1$ and $c_2 = 2$;
633
634\begin{equation*}
635 n \le f(n) \le 2n
636\end{equation*}
637
619\begin{info}[] 638\begin{info}[]
620 $f(n) = n(\log n)^{2}$ 639 $f(n) = n(\log n)^{2}$
621\end{info} 640\end{info}