diff options
author | Yigit Sever | 2020-11-08 22:28:06 +0300 |
---|---|---|
committer | Yigit Sever | 2020-11-08 22:28:06 +0300 |
commit | b8a6b4e3f1778b53cd45bf2ebe2ed8cac279c71f (patch) | |
tree | 78416fa5b874519256d8a019af3103caedb45727 | |
parent | d9b06cc947692e378feee8ae26cdc0cbe055d502 (diff) | |
download | hw1-b8a6b4e3f1778b53cd45bf2ebe2ed8cac279c71f.tar.gz hw1-b8a6b4e3f1778b53cd45bf2ebe2ed8cac279c71f.tar.bz2 hw1-b8a6b4e3f1778b53cd45bf2ebe2ed8cac279c71f.zip |
Answer of the last question
-rw-r--r-- | main.tex | 1 |
1 files changed, 1 insertions, 0 deletions
@@ -650,6 +650,7 @@ From the lectures we know that $\log{n}$ is $\mathcal{O}(n^{d})$ for all $d$. | |||
650 | 650 | ||
651 | If $\log{n}$ is $\mathcal{O}(n^{\frac{1}{2}})$ then $n(\log{n})^{2}$ is $\mathcal{O}(n^{2})$. $H=2$. | 651 | If $\log{n}$ is $\mathcal{O}(n^{\frac{1}{2}})$ then $n(\log{n})^{2}$ is $\mathcal{O}(n^{2})$. $H=2$. |
652 | 652 | ||
653 | For $L$; we know that $f(n) = n(\log{n})^{2} > n^{1}$ but $n(\log{n})^{2} < n^{2}$ hence L = 1$. | ||
653 | 654 | ||
654 | % 1}}} % | 655 | % 1}}} % |
655 | 656 | ||