import argparse import numpy as np import random from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.preprocessing import normalize from Wasserstein_Distance import Wasserstein_Retriever from Wasserstein_Distance import load_embeddings, clean_corpus_using_embeddings_vocabulary, mrr_precision_at_k import csv def main(args): np.seterr(divide='ignore') # POT has issues with divide by zero errors source_lang = args.source_lang target_lang = args.target_lang source_vectors_filename = args.source_vector target_vectors_filename = args.target_vector vectors_source = load_embeddings(source_vectors_filename) vectors_target = load_embeddings(target_vectors_filename) source_defs_filename = args.source_defs target_defs_filename = args.target_defs batch = args.batch mode = args.mode runfor = list() if (mode == 'all'): runfor.extend(['wmd','snk']) else: runfor.append(mode) defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( set(vectors_source.keys()), defs_source, vectors_source, source_lang, ) clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( set(vectors_target.keys()), defs_target, vectors_target, target_lang, ) take = args.instances common_keys = set(src_keys).intersection(set(target_keys)) take = min(len(common_keys), take) # you can't sample more than length experiment_keys = random.sample(common_keys, take) instances = len(experiment_keys) clean_src_corpus = list(clean_src_corpus[experiment_keys]) clean_target_corpus = list(clean_target_corpus[experiment_keys]) if (not batch): print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') del vectors_source, vectors_target, defs_source, defs_target vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors] W_common = [] for w in common: if w in clean_src_vectors: W_common.append(np.array(clean_src_vectors[w])) else: W_common.append(np.array(clean_target_vectors[w])) if (not batch): print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') W_common = np.array(W_common) W_common = normalize(W_common) vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) vect.fit(clean_src_corpus + clean_target_corpus) X_train_idf = vect.transform(clean_src_corpus) X_test_idf = vect.transform(clean_target_corpus) vect_tf = CountVectorizer(vocabulary=common, dtype=np.double) vect_tf.fit(clean_src_corpus + clean_target_corpus) X_train_tf = vect_tf.transform(clean_src_corpus) X_test_tf = vect_tf.transform(clean_target_corpus) for metric in runfor: if (not batch): print(f'{metric} - tfidf: {source_lang} - {target_lang}') clf = Wasserstein_Retriever(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == 'snk')) clf.fit(X_train_idf[:instances], np.ones(instances)) dist, preds = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) mrr, p_at_one = mrr_precision_at_k(list(range(len(preds))), preds) percentage = p_at_one * 100 if (not batch): print(f'P @ 1: {p_at_one}\ninstances: {instances}\n{percentage}%') else: fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{p_at_one}', f'{percentage}'] with open(f'{metric}_retrieval_result.csv', 'a') as f: writer = csv.writer(f) writer.writerow(fields) if __name__ == "__main__": parser = argparse.ArgumentParser(description='run retrieval using wmd or snk') parser.add_argument('source_lang', help='source language short name') parser.add_argument('target_lang', help='target language short name') parser.add_argument('source_vector', help='path of the source vector') parser.add_argument('target_vector', help='path of the target vector') parser.add_argument('source_defs', help='path of the source definitions') parser.add_argument('target_defs', help='path of the target definitions') parser.add_argument('-b', '--batch', action='store_true', help='running in batch (store results in csv) or running a single instance (output the results)') parser.add_argument('mode', choices=['all', 'wmd', 'snk'], default='all', help='which methods to run') parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int) args = parser.parse_args() main(args)