import argparse import csv import random import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.preprocessing import normalize from Wasserstein_Distance import (WassersteinMatcher, WassersteinRetriever, load_embeddings, process_corpus) def main(args): np.seterr(divide="ignore") # POT has issues with divide by zero errors source_lang = args.source_lang target_lang = args.target_lang source_vectors_filename = args.source_vector target_vectors_filename = args.target_vector vectors_source = load_embeddings(source_vectors_filename) vectors_target = load_embeddings(target_vectors_filename) source_defs_filename = args.source_defs target_defs_filename = args.target_defs batch = args.batch input_mode = args.mode input_paradigm = args.paradigm run_method = list() run_paradigm = list() if input_paradigm == "all": run_paradigm.extend(("matching", "retrieval")) else: run_paradigm.append(input_paradigm) if input_mode == "all": run_method.extend(["wmd", "snk"]) else: run_method.append(input_mode) defs_source = [ line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") ] defs_target = [ line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") ] clean_src_corpus, clean_src_vectors, src_keys = process_corpus( set(vectors_source.keys()), defs_source, vectors_source, source_lang ) clean_target_corpus, clean_target_vectors, target_keys = process_corpus( set(vectors_target.keys()), defs_target, vectors_target, target_lang ) take = args.instances common_keys = set(src_keys).intersection(set(target_keys)) take = min(len(common_keys), take) # you can't sample more than length experiment_keys = random.sample(common_keys, take) instances = len(experiment_keys) clean_src_corpus = list(clean_src_corpus[experiment_keys]) clean_target_corpus = list(clean_target_corpus[experiment_keys]) del vectors_source, vectors_target, defs_source, defs_target vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) common = [ word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors ] W_common = [] for w in common: if w in clean_src_vectors: W_common.append(np.array(clean_src_vectors[w])) else: W_common.append(np.array(clean_target_vectors[w])) if not batch: print( f"{source_lang} - {target_lang}\n" + f" document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}\n" + f" vocabulary size: {len(W_common)}" ) W_common = np.array(W_common) W_common = normalize(W_common) vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) vect.fit(clean_src_corpus + clean_target_corpus) X_train_idf = vect.transform(clean_src_corpus) X_test_idf = vect.transform(clean_target_corpus) for paradigm in run_paradigm: WassersteinDriver = None if paradigm == "matching": WassersteinDriver = WassersteinMatcher else: WassersteinDriver = WassersteinRetriever for metric in run_method: if not batch: print(f"{paradigm} - {metric} on {source_lang} - {target_lang}") clf = WassersteinDriver( W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == "snk") ) clf.fit(X_train_idf[:instances], np.ones(instances)) p_at_one, percentage = clf.align( X_test_idf[:instances], n_neighbors=instances ) if not batch: print(f"P @ 1: {p_at_one}\n{percentage}% {instances} definitions\n") else: fields = [ f"{source_lang}", f"{target_lang}", f"{instances}", f"{p_at_one}", f"{percentage}", ] with open(f"{metric}_{paradigm}_results.csv", "a") as f: writer = csv.writer(f) writer.writerow(fields) if __name__ == "__main__": parser = argparse.ArgumentParser( description="align dictionaries using wmd and wasserstein distance" ) parser.add_argument("source_lang", help="source language short name") parser.add_argument("target_lang", help="target language short name") parser.add_argument("source_vector", help="path of the source vector") parser.add_argument("target_vector", help="path of the target vector") parser.add_argument("source_defs", help="path of the source definitions") parser.add_argument("target_defs", help="path of the target definitions") parser.add_argument( "-b", "--batch", action="store_true", help="running in batch (store results in csv) or" + "running a single instance (output the results)", ) parser.add_argument( "mode", choices=["all", "wmd", "snk"], default="all", help="which methods to run", ) parser.add_argument( "paradigm", choices=["all", "retrieval", "matching"], default="all", help="which paradigms to align with", ) parser.add_argument( "-n", "--instances", help="number of instances in each language to retrieve", default=1000, type=int, ) args = parser.parse_args() main(args)