From c74318070ad85d5d7943e96d343aa961db305316 Mon Sep 17 00:00:00 2001 From: Yigit Sever Date: Wed, 25 Sep 2019 14:21:44 +0300 Subject: Merge WMD/SNK matching and retrieval --- WMD_retrieval.py | 149 ------------------------------------------------------- 1 file changed, 149 deletions(-) delete mode 100644 WMD_retrieval.py (limited to 'WMD_retrieval.py') diff --git a/WMD_retrieval.py b/WMD_retrieval.py deleted file mode 100644 index cb72079..0000000 --- a/WMD_retrieval.py +++ /dev/null @@ -1,149 +0,0 @@ -import argparse -import csv -import random - -import numpy as np -from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer -from sklearn.preprocessing import normalize - -from Wasserstein_Distance import (WassersteinRetriever, - clean_corpus_using_embeddings_vocabulary, - load_embeddings) - - -def main(args): - - np.seterr(divide="ignore") # POT has issues with divide by zero errors - source_lang = args.source_lang - target_lang = args.target_lang - - source_vectors_filename = args.source_vector - target_vectors_filename = args.target_vector - vectors_source = load_embeddings(source_vectors_filename) - vectors_target = load_embeddings(target_vectors_filename) - - source_defs_filename = args.source_defs - target_defs_filename = args.target_defs - - batch = args.batch - mode = args.mode - runfor = list() - - if mode == "all": - runfor.extend(["wmd", "snk"]) - else: - runfor.append(mode) - - defs_source = [ - line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") - ] - defs_target = [ - line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") - ] - - clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( - set(vectors_source.keys()), defs_source, vectors_source, source_lang - ) - - clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( - set(vectors_target.keys()), defs_target, vectors_target, target_lang - ) - - take = args.instances - - common_keys = set(src_keys).intersection(set(target_keys)) - take = min(len(common_keys), take) # you can't sample more than length - experiment_keys = random.sample(common_keys, take) - - instances = len(experiment_keys) - - clean_src_corpus = list(clean_src_corpus[experiment_keys]) - clean_target_corpus = list(clean_target_corpus[experiment_keys]) - - if not batch: - print( - f"{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}" - ) - - del vectors_source, vectors_target, defs_source, defs_target - - vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) - common = [ - word - for word in vec.get_feature_names() - if word in clean_src_vectors or word in clean_target_vectors - ] - W_common = [] - for w in common: - if w in clean_src_vectors: - W_common.append(np.array(clean_src_vectors[w])) - else: - W_common.append(np.array(clean_target_vectors[w])) - - if not batch: - print(f"{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}") - - W_common = np.array(W_common) - W_common = normalize(W_common) - vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) - vect.fit(clean_src_corpus + clean_target_corpus) - X_train_idf = vect.transform(clean_src_corpus) - X_test_idf = vect.transform(clean_target_corpus) - - for metric in runfor: - if not batch: - print(f"{metric}: {source_lang} - {target_lang}") - - clf = WassersteinRetriever( - W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == "snk") - ) - clf.fit(X_train_idf[:instances], np.ones(instances)) - p_at_one, percentage = clf.align(X_test_idf[:instances], n_neighbors=instances) - - if not batch: - print(f"P @ 1: {p_at_one}\ninstances: {instances}\n{percentage}%") - else: - fields = [ - f"{source_lang}", - f"{target_lang}", - f"{instances}", - f"{p_at_one}", - f"{percentage}", - ] - with open(f"{metric}_retrieval_result.csv", "a") as f: - writer = csv.writer(f) - writer.writerow(fields) - - -if __name__ == "__main__": - - parser = argparse.ArgumentParser(description="run retrieval using wmd or snk") - parser.add_argument("source_lang", help="source language short name") - parser.add_argument("target_lang", help="target language short name") - parser.add_argument("source_vector", help="path of the source vector") - parser.add_argument("target_vector", help="path of the target vector") - parser.add_argument("source_defs", help="path of the source definitions") - parser.add_argument("target_defs", help="path of the target definitions") - parser.add_argument( - "-b", - "--batch", - action="store_true", - help="running in batch (store results in csv) or running a single instance (output the results)", - ) - parser.add_argument( - "mode", - choices=["all", "wmd", "snk"], - default="all", - help="which methods to run", - ) - parser.add_argument( - "-n", - "--instances", - help="number of instances in each language to retrieve", - default=1000, - type=int, - ) - - args = parser.parse_args() - - main(args) -- cgit v1.2.3-70-g09d2