diff options
Diffstat (limited to 'sentence_emb_matching.py')
-rw-r--r-- | sentence_emb_matching.py | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/sentence_emb_matching.py b/sentence_emb_matching.py new file mode 100644 index 0000000..38812d7 --- /dev/null +++ b/sentence_emb_matching.py | |||
@@ -0,0 +1,153 @@ | |||
1 | import argparse | ||
2 | |||
3 | parser = argparse.ArgumentParser(description='run matching using sentence embeddings and cosine similarity') | ||
4 | parser.add_argument('source_lang', help='source language short name') | ||
5 | parser.add_argument('target_lang', help='target language short name') | ||
6 | parser.add_argument('source_vector', help='path of the source vector') | ||
7 | parser.add_argument('target_vector', help='path of the target vector') | ||
8 | parser.add_argument('source_defs', help='path of the source definitions') | ||
9 | parser.add_argument('target_defs', help='path of the target definitions') | ||
10 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
11 | |||
12 | args = parser.parse_args() | ||
13 | |||
14 | source_lang = args.source_lang | ||
15 | target_lang = args.target_lang | ||
16 | |||
17 | def load_embeddings(path, dimension = 300): | ||
18 | """ | ||
19 | Loads the embeddings from a word2vec formatted file. | ||
20 | The first line may or may not include the word count and dimension | ||
21 | """ | ||
22 | vectors = {} | ||
23 | with open(path, mode='r', encoding='utf8') as fp: | ||
24 | first_line = fp.readline().rstrip('\n') | ||
25 | if first_line.count(' ') == 1: # includes the "word_count dimension" information | ||
26 | (word_count, dimension) = map(int, first_line.split()) | ||
27 | else: # assume the file only contains vectors | ||
28 | fp.seek(0) | ||
29 | for line in fp: | ||
30 | elems = line.split() | ||
31 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | ||
32 | return vectors | ||
33 | |||
34 | source_vectors_filename = args.source_vector | ||
35 | target_vectors_filename = args.target_vector | ||
36 | vectors_source = load_embeddings(source_vectors_filename) | ||
37 | vectors_target = load_embeddings(target_vectors_filename) | ||
38 | |||
39 | source_defs_filename = args.source_defs | ||
40 | target_defs_filename = args.target_defs | ||
41 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | ||
42 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
43 | |||
44 | import numpy as np | ||
45 | from mosestokenizer import * | ||
46 | |||
47 | def clean_corpus_using_embeddings_vocabulary( | ||
48 | embeddings_dictionary, | ||
49 | corpus, | ||
50 | vectors, | ||
51 | language, | ||
52 | ): | ||
53 | ''' | ||
54 | Cleans corpus using the dictionary of embeddings. | ||
55 | Any word without an associated embedding in the dictionary is ignored. | ||
56 | ''' | ||
57 | clean_corpus, clean_vectors, keys = [], {}, [] | ||
58 | words_we_want = set(embeddings_dictionary) | ||
59 | tokenize = MosesTokenizer(language) | ||
60 | for key, doc in enumerate(corpus): | ||
61 | clean_doc = [] | ||
62 | words = tokenize(doc) | ||
63 | for word in words: | ||
64 | if word in words_we_want: | ||
65 | clean_doc.append(word) | ||
66 | clean_vectors[word] = np.array(vectors[word].split()).astype(np.float) | ||
67 | if len(clean_doc) > 3 and len(clean_doc) < 25: | ||
68 | keys.append(key) | ||
69 | clean_corpus.append(' '.join(clean_doc)) | ||
70 | tokenize.close() | ||
71 | return np.array(clean_corpus), clean_vectors, keys | ||
72 | |||
73 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
74 | set(vectors_source.keys()), | ||
75 | defs_source, | ||
76 | vectors_source, | ||
77 | source_lang, | ||
78 | ) | ||
79 | |||
80 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
81 | set(vectors_target.keys()), | ||
82 | defs_target, | ||
83 | vectors_target, | ||
84 | target_lang, | ||
85 | ) | ||
86 | |||
87 | import random | ||
88 | take = args.instances | ||
89 | |||
90 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
91 | take = min(len(common_keys), take) # you can't sample more than length | ||
92 | experiment_keys = random.sample(common_keys, take) | ||
93 | |||
94 | instances = len(experiment_keys) | ||
95 | |||
96 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
97 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
98 | |||
99 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | ||
100 | |||
101 | del vectors_source, vectors_target, defs_source, defs_target | ||
102 | |||
103 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
104 | |||
105 | vocab_counter = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
106 | common = [w for w in vocab_counter.get_feature_names() if w in clean_src_vectors or w in clean_target_vectors] | ||
107 | W_common = [] | ||
108 | |||
109 | for w in common: | ||
110 | if w in clean_src_vectors: | ||
111 | W_common.append(np.array(clean_src_vectors[w])) | ||
112 | else: | ||
113 | W_common.append(np.array(clean_target_vectors[w])) | ||
114 | |||
115 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | ||
116 | |||
117 | from sklearn.preprocessing import normalize | ||
118 | W_common = np.array(W_common) | ||
119 | W_common = normalize(W_common) # default is l2 | ||
120 | |||
121 | vect_tfidf = TfidfVectorizer(vocabulary=common, dtype=np.double, norm='l2') | ||
122 | vect_tfidf.fit(clean_src_corpus + clean_target_corpus) | ||
123 | X_idf_source = vect_tfidf.transform(clean_src_corpus) | ||
124 | X_idf_target = vect_tfidf.transform(clean_target_corpus) | ||
125 | |||
126 | print(f'Matrices are {X_idf_source.shape} and {W_common.shape}') | ||
127 | print(f'The dimensions are {X_idf_source.ndim} and {W_common.ndim}') | ||
128 | |||
129 | X_idf_source_array = X_idf_source.toarray() | ||
130 | X_idf_target_array = X_idf_target.toarray() | ||
131 | S_emb_source = np.matmul(X_idf_source_array, W_common) | ||
132 | S_emb_target = np.matmul(X_idf_target_array, W_common) | ||
133 | |||
134 | S_emb_target_transpose = np.transpose(S_emb_target) | ||
135 | |||
136 | cost_matrix = np.matmul(S_emb_source, S_emb_target_transpose) | ||
137 | |||
138 | from lapjv import lapjv | ||
139 | cost_matrix = cost_matrix * -1000 | ||
140 | row_ind, col_ind, a = lapjv(cost_matrix, verbose=False) | ||
141 | |||
142 | result = zip(row_ind, col_ind) | ||
143 | hit_one = len([x for x,y in result if x == y]) | ||
144 | print(f'{hit_one} definitions have been mapped correctly, shape of cost matrix: {str(cost_matrix.shape)}') | ||
145 | |||
146 | import csv | ||
147 | percentage = hit_one / instances * 100 | ||
148 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | ||
149 | |||
150 | with open('semb_matcing.csv', 'a') as f: | ||
151 | writer = csv.writer(f) | ||
152 | writer.writerow(fields) | ||
153 | |||