diff options
Diffstat (limited to 'Wasserstein_Distance.py')
| -rw-r--r-- | Wasserstein_Distance.py | 136 |
1 files changed, 72 insertions, 64 deletions
diff --git a/Wasserstein_Distance.py b/Wasserstein_Distance.py index 78bf9cf..60991b9 100644 --- a/Wasserstein_Distance.py +++ b/Wasserstein_Distance.py | |||
| @@ -11,17 +11,20 @@ from sklearn.utils import check_array | |||
| 11 | 11 | ||
| 12 | class WassersteinMatcher(KNeighborsClassifier): | 12 | class WassersteinMatcher(KNeighborsClassifier): |
| 13 | """ | 13 | """ |
| 14 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | 14 | Source and target distributions are l_1 normalized before computing the Wasserstein |
| 15 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | 15 | distance. Wasserstein is parametrized by the distances between the individual |
| 16 | Wasserstein is parametrized by the distances between the individual points of the distributions. | 16 | points of the distributions. |
| 17 | """ | 17 | """ |
| 18 | def __init__(self, | 18 | |
| 19 | W_embed, | 19 | def __init__( |
| 20 | n_neighbors=1, | 20 | self, |
| 21 | n_jobs=1, | 21 | W_embed, |
| 22 | verbose=False, | 22 | n_neighbors=1, |
| 23 | sinkhorn=False, | 23 | n_jobs=1, |
| 24 | sinkhorn_reg=0.1): | 24 | verbose=False, |
| 25 | sinkhorn=False, | ||
| 26 | sinkhorn_reg=0.1, | ||
| 27 | ): | ||
| 25 | """ | 28 | """ |
| 26 | Initialization of the class. | 29 | Initialization of the class. |
| 27 | Arguments | 30 | Arguments |
| @@ -33,10 +36,12 @@ class WassersteinMatcher(KNeighborsClassifier): | |||
| 33 | self.sinkhorn_reg = sinkhorn_reg | 36 | self.sinkhorn_reg = sinkhorn_reg |
| 34 | self.W_embed = W_embed | 37 | self.W_embed = W_embed |
| 35 | self.verbose = verbose | 38 | self.verbose = verbose |
| 36 | super(WassersteinMatcher, self).__init__(n_neighbors=n_neighbors, | 39 | super(WassersteinMatcher, self).__init__( |
| 37 | n_jobs=n_jobs, | 40 | n_neighbors=n_neighbors, |
| 38 | metric='precomputed', | 41 | n_jobs=n_jobs, |
| 39 | algorithm='brute') | 42 | metric="precomputed", |
| 43 | algorithm="brute", | ||
| 44 | ) | ||
| 40 | 45 | ||
| 41 | def _wmd(self, i, row, X_train): | 46 | def _wmd(self, i, row, X_train): |
| 42 | union_idx = np.union1d(X_train[i].indices, row.indices) | 47 | union_idx = np.union1d(X_train[i].indices, row.indices) |
| @@ -51,7 +56,7 @@ class WassersteinMatcher(KNeighborsClassifier): | |||
| 51 | W_dist, | 56 | W_dist, |
| 52 | self.sinkhorn_reg, | 57 | self.sinkhorn_reg, |
| 53 | numItermax=50, | 58 | numItermax=50, |
| 54 | method='sinkhorn_stabilized', | 59 | method="sinkhorn_stabilized", |
| 55 | )[0] | 60 | )[0] |
| 56 | else: | 61 | else: |
| 57 | return ot.emd2(bow_i, bow_j, W_dist) | 62 | return ot.emd2(bow_i, bow_j, W_dist) |
| @@ -66,27 +71,27 @@ class WassersteinMatcher(KNeighborsClassifier): | |||
| 66 | 71 | ||
| 67 | if X_train is None: | 72 | if X_train is None: |
| 68 | X_train = self._fit_X | 73 | X_train = self._fit_X |
| 69 | pool = Pool(nodes=self.n_jobs | 74 | pool = Pool( |
| 70 | ) # Parallelization of the calculation of the distances | 75 | nodes=self.n_jobs |
| 76 | ) # Parallelization of the calculation of the distances | ||
| 71 | dist = pool.map(self._wmd_row, X_test) | 77 | dist = pool.map(self._wmd_row, X_test) |
| 72 | return np.array(dist) | 78 | return np.array(dist) |
| 73 | 79 | ||
| 74 | def fit(self, X, y): # X_train_idf | 80 | def fit(self, X, y): # X_train_idf |
| 75 | X = check_array(X, accept_sparse='csr', | 81 | X = check_array(X, accept_sparse="csr", copy=True) # check if array is sparse |
| 76 | copy=True) # check if array is sparse | 82 | X = normalize(X, norm="l1", copy=False) |
| 77 | X = normalize(X, norm='l1', copy=False) | ||
| 78 | return super(WassersteinMatcher, self).fit(X, y) | 83 | return super(WassersteinMatcher, self).fit(X, y) |
| 79 | 84 | ||
| 80 | def predict(self, X): | 85 | def predict(self, X): |
| 81 | X = check_array(X, accept_sparse='csr', copy=True) | 86 | X = check_array(X, accept_sparse="csr", copy=True) |
| 82 | X = normalize(X, norm='l1', copy=False) | 87 | X = normalize(X, norm="l1", copy=False) |
| 83 | dist = self._pairwise_wmd(X) | 88 | dist = self._pairwise_wmd(X) |
| 84 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | 89 | dist = dist * 1000 # for lapjv, small floating point numbers are evil |
| 85 | return super(WassersteinMatcher, self).predict(dist) | 90 | return super(WassersteinMatcher, self).predict(dist) |
| 86 | 91 | ||
| 87 | def kneighbors(self, X, n_neighbors=1): | 92 | def kneighbors(self, X, n_neighbors=1): |
| 88 | X = check_array(X, accept_sparse='csr', copy=True) | 93 | X = check_array(X, accept_sparse="csr", copy=True) |
| 89 | X = normalize(X, norm='l1', copy=False) | 94 | X = normalize(X, norm="l1", copy=False) |
| 90 | dist = self._pairwise_wmd(X) | 95 | dist = self._pairwise_wmd(X) |
| 91 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | 96 | dist = dist * 1000 # for lapjv, small floating point numbers are evil |
| 92 | return lapjv(dist) | 97 | return lapjv(dist) |
| @@ -102,19 +107,24 @@ class WassersteinMatcher(KNeighborsClassifier): | |||
| 102 | percentage = p_at_one / n_neighbors * 100 | 107 | percentage = p_at_one / n_neighbors * 100 |
| 103 | return p_at_one, percentage | 108 | return p_at_one, percentage |
| 104 | 109 | ||
| 110 | |||
| 105 | class WassersteinRetriever(KNeighborsClassifier): | 111 | class WassersteinRetriever(KNeighborsClassifier): |
| 106 | """ | 112 | """ |
| 107 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | 113 | Implements a nearest neighbors classifier for input distributions using |
| 108 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | 114 | the Wasserstein distance as metric. Source and target distributions |
| 109 | Wasserstein is parametrized by the distances between the individual points of the distributions. | 115 | are l_1 normalized before computing the Wasserstein distance. Wasserstein is |
| 116 | parametrized by the distances between the individual points of the distributions. | ||
| 110 | """ | 117 | """ |
| 111 | def __init__(self, | 118 | |
| 112 | W_embed, | 119 | def __init__( |
| 113 | n_neighbors=1, | 120 | self, |
| 114 | n_jobs=1, | 121 | W_embed, |
| 115 | verbose=False, | 122 | n_neighbors=1, |
| 116 | sinkhorn=False, | 123 | n_jobs=1, |
| 117 | sinkhorn_reg=0.1): | 124 | verbose=False, |
| 125 | sinkhorn=False, | ||
| 126 | sinkhorn_reg=0.1, | ||
| 127 | ): | ||
| 118 | """ | 128 | """ |
| 119 | Initialization of the class. | 129 | Initialization of the class. |
| 120 | Arguments | 130 | Arguments |
| @@ -126,10 +136,12 @@ class WassersteinRetriever(KNeighborsClassifier): | |||
| 126 | self.sinkhorn_reg = sinkhorn_reg | 136 | self.sinkhorn_reg = sinkhorn_reg |
| 127 | self.W_embed = W_embed | 137 | self.W_embed = W_embed |
| 128 | self.verbose = verbose | 138 | self.verbose = verbose |
| 129 | super(WassersteinRetriever, self).__init__(n_neighbors=n_neighbors, | 139 | super(WassersteinRetriever, self).__init__( |
| 130 | n_jobs=n_jobs, | 140 | n_neighbors=n_neighbors, |
| 131 | metric='precomputed', | 141 | n_jobs=n_jobs, |
| 132 | algorithm='brute') | 142 | metric="precomputed", |
| 143 | algorithm="brute", | ||
| 144 | ) | ||
| 133 | 145 | ||
| 134 | def _wmd(self, i, row, X_train): | 146 | def _wmd(self, i, row, X_train): |
| 135 | union_idx = np.union1d(X_train[i].indices, row.indices) | 147 | union_idx = np.union1d(X_train[i].indices, row.indices) |
| @@ -144,7 +156,7 @@ class WassersteinRetriever(KNeighborsClassifier): | |||
| 144 | W_dist, | 156 | W_dist, |
| 145 | self.sinkhorn_reg, | 157 | self.sinkhorn_reg, |
| 146 | numItermax=50, | 158 | numItermax=50, |
| 147 | method='sinkhorn_stabilized', | 159 | method="sinkhorn_stabilized", |
| 148 | )[0] | 160 | )[0] |
| 149 | else: | 161 | else: |
| 150 | return ot.emd2(bow_i, bow_j, W_dist) | 162 | return ot.emd2(bow_i, bow_j, W_dist) |
| @@ -164,19 +176,19 @@ class WassersteinRetriever(KNeighborsClassifier): | |||
| 164 | return np.array(dist) | 176 | return np.array(dist) |
| 165 | 177 | ||
| 166 | def fit(self, X, y): | 178 | def fit(self, X, y): |
| 167 | X = check_array(X, accept_sparse='csr', copy=True) | 179 | X = check_array(X, accept_sparse="csr", copy=True) |
| 168 | X = normalize(X, norm='l1', copy=False) | 180 | X = normalize(X, norm="l1", copy=False) |
| 169 | return super(WassersteinRetriever, self).fit(X, y) | 181 | return super(WassersteinRetriever, self).fit(X, y) |
| 170 | 182 | ||
| 171 | def predict(self, X): | 183 | def predict(self, X): |
| 172 | X = check_array(X, accept_sparse='csr', copy=True) | 184 | X = check_array(X, accept_sparse="csr", copy=True) |
| 173 | X = normalize(X, norm='l1', copy=False) | 185 | X = normalize(X, norm="l1", copy=False) |
| 174 | dist = self._pairwise_wmd(X) | 186 | dist = self._pairwise_wmd(X) |
| 175 | return super(WassersteinRetriever, self).predict(dist) | 187 | return super(WassersteinRetriever, self).predict(dist) |
| 176 | 188 | ||
| 177 | def kneighbors(self, X, n_neighbors=1): | 189 | def kneighbors(self, X, n_neighbors=1): |
| 178 | X = check_array(X, accept_sparse='csr', copy=True) | 190 | X = check_array(X, accept_sparse="csr", copy=True) |
| 179 | X = normalize(X, norm='l1', copy=False) | 191 | X = normalize(X, norm="l1", copy=False) |
| 180 | dist = self._pairwise_wmd(X) | 192 | dist = self._pairwise_wmd(X) |
| 181 | return super(WassersteinRetriever, self).kneighbors(dist, n_neighbors) | 193 | return super(WassersteinRetriever, self).kneighbors(dist, n_neighbors) |
| 182 | 194 | ||
| @@ -199,9 +211,9 @@ def load_embeddings(path, dimension=300): | |||
| 199 | The first line may or may not include the word count and dimension | 211 | The first line may or may not include the word count and dimension |
| 200 | """ | 212 | """ |
| 201 | vectors = {} | 213 | vectors = {} |
| 202 | with open(path, mode='r', encoding='utf8') as fp: | 214 | with open(path, mode="r", encoding="utf8") as fp: |
| 203 | first_line = fp.readline().rstrip('\n') | 215 | first_line = fp.readline().rstrip("\n") |
| 204 | if first_line.count(' ') == 1: | 216 | if first_line.count(" ") == 1: |
| 205 | # includes the "word_count dimension" information | 217 | # includes the "word_count dimension" information |
| 206 | (_, dimension) = map(int, first_line.split()) | 218 | (_, dimension) = map(int, first_line.split()) |
| 207 | else: | 219 | else: |
| @@ -209,22 +221,19 @@ def load_embeddings(path, dimension=300): | |||
| 209 | fp.seek(0) | 221 | fp.seek(0) |
| 210 | for line in fp: | 222 | for line in fp: |
| 211 | elems = line.split() | 223 | elems = line.split() |
| 212 | vectors[" ".join(elems[:-dimension])] = " ".join( | 224 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) |
| 213 | elems[-dimension:]) | ||
| 214 | return vectors | 225 | return vectors |
| 215 | 226 | ||
| 216 | 227 | ||
| 217 | def clean_corpus_using_embeddings_vocabulary( | 228 | def clean_corpus_using_embeddings_vocabulary( |
| 218 | embeddings_dictionary, | 229 | embeddings_dictionary, corpus, vectors, language |
| 219 | corpus, | ||
| 220 | vectors, | ||
| 221 | language, | ||
| 222 | ): | 230 | ): |
| 223 | ''' | 231 | """ |
| 224 | Cleans corpus using the dictionary of embeddings. | 232 | Cleans corpus using the dictionary of embeddings. |
| 225 | Any word without an associated embedding in the dictionary is ignored. | 233 | Any word without an associated embedding in the dictionary is ignored. |
| 226 | Adds '__target-language' and '__source-language' at the end of the words according to their language. | 234 | Adds '__target-language' and '__source-language' at the end |
| 227 | ''' | 235 | of the words according to their language. |
| 236 | """ | ||
| 228 | clean_corpus, clean_vectors, keys = [], {}, [] | 237 | clean_corpus, clean_vectors, keys = [], {}, [] |
| 229 | words_we_want = set(embeddings_dictionary) | 238 | words_we_want = set(embeddings_dictionary) |
| 230 | tokenize = MosesTokenizer(language) | 239 | tokenize = MosesTokenizer(language) |
| @@ -233,19 +242,18 @@ def clean_corpus_using_embeddings_vocabulary( | |||
| 233 | words = tokenize(doc) | 242 | words = tokenize(doc) |
| 234 | for word in words: | 243 | for word in words: |
| 235 | if word in words_we_want: | 244 | if word in words_we_want: |
| 236 | clean_doc.append(word + '__%s' % language) | 245 | clean_doc.append(word + "__%s" % language) |
| 237 | clean_vectors[word + '__%s' % language] = np.array( | 246 | clean_vectors[word + "__%s" % language] = np.array( |
| 238 | vectors[word].split()).astype(np.float) | 247 | vectors[word].split() |
| 248 | ).astype(np.float) | ||
| 239 | if len(clean_doc) > 3 and len(clean_doc) < 25: | 249 | if len(clean_doc) > 3 and len(clean_doc) < 25: |
| 240 | keys.append(key) | 250 | keys.append(key) |
| 241 | clean_corpus.append(' '.join(clean_doc)) | 251 | clean_corpus.append(" ".join(clean_doc)) |
| 242 | tokenize.close() | 252 | tokenize.close() |
| 243 | return np.array(clean_corpus), clean_vectors, keys | 253 | return np.array(clean_corpus), clean_vectors, keys |
| 244 | 254 | ||
| 245 | 255 | ||
| 246 | def mrr_precision_at_k(golden, preds, k_list=[ | 256 | def mrr_precision_at_k(golden, preds, k_list=[1]): |
| 247 | 1, | ||
| 248 | ]): | ||
| 249 | """ | 257 | """ |
| 250 | Calculates Mean Reciprocal Error and Hits@1 == Precision@1 | 258 | Calculates Mean Reciprocal Error and Hits@1 == Precision@1 |
| 251 | """ | 259 | """ |
