diff options
| -rw-r--r-- | WMD.py (renamed from WMD_matching.py) | 94 | ||||
| -rw-r--r-- | WMD_retrieval.py | 149 | ||||
| -rw-r--r-- | Wasserstein_Distance.py | 4 |
3 files changed, 60 insertions, 187 deletions
| @@ -6,9 +6,8 @@ import numpy as np | |||
| 6 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | 6 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer |
| 7 | from sklearn.preprocessing import normalize | 7 | from sklearn.preprocessing import normalize |
| 8 | 8 | ||
| 9 | from Wasserstein_Distance import (WassersteinMatcher, | 9 | from Wasserstein_Distance import (WassersteinMatcher, WassersteinRetriever, |
| 10 | clean_corpus_using_embeddings_vocabulary, | 10 | load_embeddings, process_corpus) |
| 11 | load_embeddings) | ||
| 12 | 11 | ||
| 13 | 12 | ||
| 14 | def main(args): | 13 | def main(args): |
| @@ -26,13 +25,21 @@ def main(args): | |||
| 26 | target_defs_filename = args.target_defs | 25 | target_defs_filename = args.target_defs |
| 27 | 26 | ||
| 28 | batch = args.batch | 27 | batch = args.batch |
| 29 | mode = args.mode | 28 | input_mode = args.mode |
| 30 | runfor = list() | 29 | input_paradigm = args.paradigm |
| 31 | 30 | ||
| 32 | if mode == "all": | 31 | run_method = list() |
| 33 | runfor.extend(["wmd", "snk"]) | 32 | run_paradigm = list() |
| 33 | |||
| 34 | if input_paradigm == "all": | ||
| 35 | run_paradigm.extend("matching", "retrieval") | ||
| 36 | else: | ||
| 37 | run_paradigm.append(input_paradigm) | ||
| 38 | |||
| 39 | if input_mode == "all": | ||
| 40 | run_method.extend(["wmd", "snk"]) | ||
| 34 | else: | 41 | else: |
| 35 | runfor.append(mode) | 42 | run_method.append(input_mode) |
| 36 | 43 | ||
| 37 | defs_source = [ | 44 | defs_source = [ |
| 38 | line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") | 45 | line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") |
| @@ -41,11 +48,11 @@ def main(args): | |||
| 41 | line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") | 48 | line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") |
| 42 | ] | 49 | ] |
| 43 | 50 | ||
| 44 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | 51 | clean_src_corpus, clean_src_vectors, src_keys = process_corpus( |
| 45 | set(vectors_source.keys()), defs_source, vectors_source, source_lang | 52 | set(vectors_source.keys()), defs_source, vectors_source, source_lang |
| 46 | ) | 53 | ) |
| 47 | 54 | ||
| 48 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | 55 | clean_target_corpus, clean_target_vectors, target_keys = process_corpus( |
| 49 | set(vectors_target.keys()), defs_target, vectors_target, target_lang | 56 | set(vectors_target.keys()), defs_target, vectors_target, target_lang |
| 50 | ) | 57 | ) |
| 51 | 58 | ||
| @@ -62,7 +69,8 @@ def main(args): | |||
| 62 | 69 | ||
| 63 | if not batch: | 70 | if not batch: |
| 64 | print( | 71 | print( |
| 65 | f"{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}" | 72 | f"{source_lang} - {target_lang} " |
| 73 | + f" document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}" | ||
| 66 | ) | 74 | ) |
| 67 | 75 | ||
| 68 | del vectors_source, vectors_target, defs_source, defs_target | 76 | del vectors_source, vectors_target, defs_source, defs_target |
| @@ -90,35 +98,44 @@ def main(args): | |||
| 90 | X_train_idf = vect.transform(clean_src_corpus) | 98 | X_train_idf = vect.transform(clean_src_corpus) |
| 91 | X_test_idf = vect.transform(clean_target_corpus) | 99 | X_test_idf = vect.transform(clean_target_corpus) |
| 92 | 100 | ||
| 93 | for metric in runfor: | 101 | for paradigm in run_paradigm: |
| 94 | if not batch: | 102 | WassersteinDriver = None |
| 95 | print(f"{metric}: {source_lang} - {target_lang}") | 103 | if paradigm == "matching": |
| 96 | 104 | WassersteinDriver = WassersteinMatcher | |
| 97 | clf = WassersteinMatcher( | ||
| 98 | W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == "snk") | ||
| 99 | ) | ||
| 100 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 101 | p_at_one, percentage = clf.align(X_test_idf[:instances], n_neighbors=instances) | ||
| 102 | |||
| 103 | if not batch: | ||
| 104 | print(f"P @ 1: {p_at_one}\ninstances: {instances}\n{percentage}%") | ||
| 105 | else: | 105 | else: |
| 106 | fields = [ | 106 | WassersteinDriver = WassersteinRetriever |
| 107 | f"{source_lang}", | 107 | |
| 108 | f"{target_lang}", | 108 | for metric in run_method: |
| 109 | f"{instances}", | 109 | if not batch: |
| 110 | f"{p_at_one}", | 110 | print(f"{metric}: {source_lang} - {target_lang}") |
| 111 | f"{percentage}", | 111 | |
| 112 | ] | 112 | clf = WassersteinDriver( |
| 113 | with open(f"{metric}_matching_results.csv", "a") as f: | 113 | W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == "snk") |
| 114 | writer = csv.writer(f) | 114 | ) |
| 115 | writer.writerow(fields) | 115 | clf.fit(X_train_idf[:instances], np.ones(instances)) |
| 116 | p_at_one, percentage = clf.align( | ||
| 117 | X_test_idf[:instances], n_neighbors=instances | ||
| 118 | ) | ||
| 119 | |||
| 120 | if not batch: | ||
| 121 | print(f"P @ 1: {p_at_one}\ninstances: {instances}\n{percentage}%") | ||
| 122 | else: | ||
| 123 | fields = [ | ||
| 124 | f"{source_lang}", | ||
| 125 | f"{target_lang}", | ||
| 126 | f"{instances}", | ||
| 127 | f"{p_at_one}", | ||
| 128 | f"{percentage}", | ||
| 129 | ] | ||
| 130 | with open(f"{metric}_{paradigm}_results.csv", "a") as f: | ||
| 131 | writer = csv.writer(f) | ||
| 132 | writer.writerow(fields) | ||
| 116 | 133 | ||
| 117 | 134 | ||
| 118 | if __name__ == "__main__": | 135 | if __name__ == "__main__": |
| 119 | 136 | ||
| 120 | parser = argparse.ArgumentParser( | 137 | parser = argparse.ArgumentParser( |
| 121 | description="matching using wmd and wasserstein distance" | 138 | description="align dictionaries using wmd and wasserstein distance" |
| 122 | ) | 139 | ) |
| 123 | parser.add_argument("source_lang", help="source language short name") | 140 | parser.add_argument("source_lang", help="source language short name") |
| 124 | parser.add_argument("target_lang", help="target language short name") | 141 | parser.add_argument("target_lang", help="target language short name") |
| @@ -130,7 +147,8 @@ if __name__ == "__main__": | |||
| 130 | "-b", | 147 | "-b", |
| 131 | "--batch", | 148 | "--batch", |
| 132 | action="store_true", | 149 | action="store_true", |
| 133 | help="running in batch (store results in csv) or running a single instance (output the results)", | 150 | help="running in batch (store results in csv) or" |
| 151 | + "running a single instance (output the results)", | ||
| 134 | ) | 152 | ) |
| 135 | parser.add_argument( | 153 | parser.add_argument( |
| 136 | "mode", | 154 | "mode", |
| @@ -139,6 +157,12 @@ if __name__ == "__main__": | |||
| 139 | help="which methods to run", | 157 | help="which methods to run", |
| 140 | ) | 158 | ) |
| 141 | parser.add_argument( | 159 | parser.add_argument( |
| 160 | "paradigm", | ||
| 161 | choices=["all", "retrieval", "matching"], | ||
| 162 | default="all", | ||
| 163 | help="which paradigms to align with", | ||
| 164 | ) | ||
| 165 | parser.add_argument( | ||
| 142 | "-n", | 166 | "-n", |
| 143 | "--instances", | 167 | "--instances", |
| 144 | help="number of instances in each language to retrieve", | 168 | help="number of instances in each language to retrieve", |
diff --git a/WMD_retrieval.py b/WMD_retrieval.py deleted file mode 100644 index cb72079..0000000 --- a/WMD_retrieval.py +++ /dev/null | |||
| @@ -1,149 +0,0 @@ | |||
| 1 | import argparse | ||
| 2 | import csv | ||
| 3 | import random | ||
| 4 | |||
| 5 | import numpy as np | ||
| 6 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
| 7 | from sklearn.preprocessing import normalize | ||
| 8 | |||
| 9 | from Wasserstein_Distance import (WassersteinRetriever, | ||
| 10 | clean_corpus_using_embeddings_vocabulary, | ||
| 11 | load_embeddings) | ||
| 12 | |||
| 13 | |||
| 14 | def main(args): | ||
| 15 | |||
| 16 | np.seterr(divide="ignore") # POT has issues with divide by zero errors | ||
| 17 | source_lang = args.source_lang | ||
| 18 | target_lang = args.target_lang | ||
| 19 | |||
| 20 | source_vectors_filename = args.source_vector | ||
| 21 | target_vectors_filename = args.target_vector | ||
| 22 | vectors_source = load_embeddings(source_vectors_filename) | ||
| 23 | vectors_target = load_embeddings(target_vectors_filename) | ||
| 24 | |||
| 25 | source_defs_filename = args.source_defs | ||
| 26 | target_defs_filename = args.target_defs | ||
| 27 | |||
| 28 | batch = args.batch | ||
| 29 | mode = args.mode | ||
| 30 | runfor = list() | ||
| 31 | |||
| 32 | if mode == "all": | ||
| 33 | runfor.extend(["wmd", "snk"]) | ||
| 34 | else: | ||
| 35 | runfor.append(mode) | ||
| 36 | |||
| 37 | defs_source = [ | ||
| 38 | line.rstrip("\n") for line in open(source_defs_filename, encoding="utf8") | ||
| 39 | ] | ||
| 40 | defs_target = [ | ||
| 41 | line.rstrip("\n") for line in open(target_defs_filename, encoding="utf8") | ||
| 42 | ] | ||
| 43 | |||
| 44 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 45 | set(vectors_source.keys()), defs_source, vectors_source, source_lang | ||
| 46 | ) | ||
| 47 | |||
| 48 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
| 49 | set(vectors_target.keys()), defs_target, vectors_target, target_lang | ||
| 50 | ) | ||
| 51 | |||
| 52 | take = args.instances | ||
| 53 | |||
| 54 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
| 55 | take = min(len(common_keys), take) # you can't sample more than length | ||
| 56 | experiment_keys = random.sample(common_keys, take) | ||
| 57 | |||
| 58 | instances = len(experiment_keys) | ||
| 59 | |||
| 60 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
| 61 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
| 62 | |||
| 63 | if not batch: | ||
| 64 | print( | ||
| 65 | f"{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}" | ||
| 66 | ) | ||
| 67 | |||
| 68 | del vectors_source, vectors_target, defs_source, defs_target | ||
| 69 | |||
| 70 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
| 71 | common = [ | ||
| 72 | word | ||
| 73 | for word in vec.get_feature_names() | ||
| 74 | if word in clean_src_vectors or word in clean_target_vectors | ||
| 75 | ] | ||
| 76 | W_common = [] | ||
| 77 | for w in common: | ||
| 78 | if w in clean_src_vectors: | ||
| 79 | W_common.append(np.array(clean_src_vectors[w])) | ||
| 80 | else: | ||
| 81 | W_common.append(np.array(clean_target_vectors[w])) | ||
| 82 | |||
| 83 | if not batch: | ||
| 84 | print(f"{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}") | ||
| 85 | |||
| 86 | W_common = np.array(W_common) | ||
| 87 | W_common = normalize(W_common) | ||
| 88 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) | ||
| 89 | vect.fit(clean_src_corpus + clean_target_corpus) | ||
| 90 | X_train_idf = vect.transform(clean_src_corpus) | ||
| 91 | X_test_idf = vect.transform(clean_target_corpus) | ||
| 92 | |||
| 93 | for metric in runfor: | ||
| 94 | if not batch: | ||
| 95 | print(f"{metric}: {source_lang} - {target_lang}") | ||
| 96 | |||
| 97 | clf = WassersteinRetriever( | ||
| 98 | W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=(metric == "snk") | ||
| 99 | ) | ||
| 100 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
| 101 | p_at_one, percentage = clf.align(X_test_idf[:instances], n_neighbors=instances) | ||
| 102 | |||
| 103 | if not batch: | ||
| 104 | print(f"P @ 1: {p_at_one}\ninstances: {instances}\n{percentage}%") | ||
| 105 | else: | ||
| 106 | fields = [ | ||
| 107 | f"{source_lang}", | ||
| 108 | f"{target_lang}", | ||
| 109 | f"{instances}", | ||
| 110 | f"{p_at_one}", | ||
| 111 | f"{percentage}", | ||
| 112 | ] | ||
| 113 | with open(f"{metric}_retrieval_result.csv", "a") as f: | ||
| 114 | writer = csv.writer(f) | ||
| 115 | writer.writerow(fields) | ||
| 116 | |||
| 117 | |||
| 118 | if __name__ == "__main__": | ||
| 119 | |||
| 120 | parser = argparse.ArgumentParser(description="run retrieval using wmd or snk") | ||
| 121 | parser.add_argument("source_lang", help="source language short name") | ||
| 122 | parser.add_argument("target_lang", help="target language short name") | ||
| 123 | parser.add_argument("source_vector", help="path of the source vector") | ||
| 124 | parser.add_argument("target_vector", help="path of the target vector") | ||
| 125 | parser.add_argument("source_defs", help="path of the source definitions") | ||
| 126 | parser.add_argument("target_defs", help="path of the target definitions") | ||
| 127 | parser.add_argument( | ||
| 128 | "-b", | ||
| 129 | "--batch", | ||
| 130 | action="store_true", | ||
| 131 | help="running in batch (store results in csv) or running a single instance (output the results)", | ||
| 132 | ) | ||
| 133 | parser.add_argument( | ||
| 134 | "mode", | ||
| 135 | choices=["all", "wmd", "snk"], | ||
| 136 | default="all", | ||
| 137 | help="which methods to run", | ||
| 138 | ) | ||
| 139 | parser.add_argument( | ||
| 140 | "-n", | ||
| 141 | "--instances", | ||
| 142 | help="number of instances in each language to retrieve", | ||
| 143 | default=1000, | ||
| 144 | type=int, | ||
| 145 | ) | ||
| 146 | |||
| 147 | args = parser.parse_args() | ||
| 148 | |||
| 149 | main(args) | ||
diff --git a/Wasserstein_Distance.py b/Wasserstein_Distance.py index 60991b9..cca2fac 100644 --- a/Wasserstein_Distance.py +++ b/Wasserstein_Distance.py | |||
| @@ -225,9 +225,7 @@ def load_embeddings(path, dimension=300): | |||
| 225 | return vectors | 225 | return vectors |
| 226 | 226 | ||
| 227 | 227 | ||
| 228 | def clean_corpus_using_embeddings_vocabulary( | 228 | def process_corpus(embeddings_dictionary, corpus, vectors, language): |
| 229 | embeddings_dictionary, corpus, vectors, language | ||
| 230 | ): | ||
| 231 | """ | 229 | """ |
| 232 | Cleans corpus using the dictionary of embeddings. | 230 | Cleans corpus using the dictionary of embeddings. |
| 233 | Any word without an associated embedding in the dictionary is ignored. | 231 | Any word without an associated embedding in the dictionary is ignored. |
