diff options
-rw-r--r-- | WMD_matching.py | 331 |
1 files changed, 134 insertions, 197 deletions
diff --git a/WMD_matching.py b/WMD_matching.py index c65e6e5..3b8b1a9 100644 --- a/WMD_matching.py +++ b/WMD_matching.py | |||
@@ -1,21 +1,27 @@ | |||
1 | ########################### | ||
2 | # Wasserstein Retrieval # | ||
3 | ########################### | ||
4 | import argparse | 1 | import argparse |
2 | import numpy as np | ||
3 | from mosestokenizer import * | ||
4 | import nltk | ||
5 | import random | ||
6 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
7 | from sklearn.preprocessing import normalize | ||
8 | from Wass_Matcher import Wasserstein_Matcher | ||
5 | 9 | ||
6 | parser = argparse.ArgumentParser(description='run matching using wmd and wasserstein distances') | 10 | if __name__ == "__main__": |
7 | parser.add_argument('source_lang', help='source language short name') | ||
8 | parser.add_argument('target_lang', help='target language short name') | ||
9 | parser.add_argument('source_vector', help='path of the source vector') | ||
10 | parser.add_argument('target_vector', help='path of the target vector') | ||
11 | parser.add_argument('source_defs', help='path of the source definitions') | ||
12 | parser.add_argument('target_defs', help='path of the target definitions') | ||
13 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=2000, type=int) | ||
14 | 11 | ||
15 | args = parser.parse_args() | 12 | parser = argparse.ArgumentParser(description='matching using wmd and wasserstein distance') |
13 | parser.add_argument('source_lang', help='source language short name') | ||
14 | parser.add_argument('target_lang', help='target language short name') | ||
15 | parser.add_argument('source_vector', help='path of the source vector') | ||
16 | parser.add_argument('target_vector', help='path of the target vector') | ||
17 | parser.add_argument('source_defs', help='path of the source definitions') | ||
18 | parser.add_argument('target_defs', help='path of the target definitions') | ||
19 | parser.add_argument('-b', '--batch', action='store_true', help='running in batch (store results in csv) or running a single instance (output the results)') | ||
20 | parser.add_argument('mode', choices=['all', 'wmd', 'snk'], default='all', help='which methods to run') | ||
21 | parser.add_argument('-n', '--instances', help='number of instances in each language to retrieve', default=1000, type=int) | ||
22 | args = parser.parse_args() | ||
16 | 23 | ||
17 | source_lang = args.source_lang | 24 | main(args) |
18 | target_lang = args.target_lang | ||
19 | 25 | ||
20 | def load_embeddings(path, dimension=300): | 26 | def load_embeddings(path, dimension=300): |
21 | """ | 27 | """ |
@@ -38,27 +44,6 @@ def load_embeddings(path, dimension=300): | |||
38 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) | 44 | vectors[" ".join(elems[:-dimension])] = " ".join(elems[-dimension:]) |
39 | return vectors | 45 | return vectors |
40 | 46 | ||
41 | ####################################################################### | ||
42 | # Vectors Load Here # | ||
43 | ####################################################################### | ||
44 | |||
45 | source_vectors_filename = args.source_vector | ||
46 | target_vectors_filename = args.target_vector | ||
47 | vectors_source = load_embeddings(source_vectors_filename) | ||
48 | vectors_target = load_embeddings(target_vectors_filename) | ||
49 | |||
50 | ####################################################################### | ||
51 | # Corpora Load Here # | ||
52 | ####################################################################### | ||
53 | |||
54 | source_defs_filename = args.source_defs | ||
55 | target_defs_filename = args.target_defs | ||
56 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] | ||
57 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] | ||
58 | |||
59 | import numpy as np | ||
60 | from mosestokenizer import * | ||
61 | |||
62 | def clean_corpus_using_embeddings_vocabulary( | 47 | def clean_corpus_using_embeddings_vocabulary( |
63 | embeddings_dictionary, | 48 | embeddings_dictionary, |
64 | corpus, | 49 | corpus, |
@@ -86,139 +71,6 @@ def clean_corpus_using_embeddings_vocabulary( | |||
86 | tokenize.close() | 71 | tokenize.close() |
87 | return np.array(clean_corpus), clean_vectors, keys | 72 | return np.array(clean_corpus), clean_vectors, keys |
88 | 73 | ||
89 | import nltk | ||
90 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( | ||
91 | set(vectors_source.keys()), | ||
92 | defs_source, | ||
93 | vectors_source, | ||
94 | source_lang, | ||
95 | ) | ||
96 | |||
97 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( | ||
98 | set(vectors_target.keys()), | ||
99 | defs_target, | ||
100 | vectors_target, | ||
101 | target_lang, | ||
102 | ) | ||
103 | |||
104 | import random | ||
105 | take = args.instances | ||
106 | |||
107 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
108 | take = min(len(common_keys), take) # you can't sample more than length | ||
109 | experiment_keys = random.sample(common_keys, take) | ||
110 | |||
111 | instances = len(experiment_keys) | ||
112 | |||
113 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
114 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
115 | |||
116 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | ||
117 | |||
118 | del vectors_source, vectors_target, defs_source, defs_target | ||
119 | |||
120 | from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | ||
121 | |||
122 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
123 | common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors] | ||
124 | W_common = [] | ||
125 | for w in common: | ||
126 | if w in clean_src_vectors: | ||
127 | W_common.append(np.array(clean_src_vectors[w])) | ||
128 | else: | ||
129 | W_common.append(np.array(clean_target_vectors[w])) | ||
130 | |||
131 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | ||
132 | |||
133 | from sklearn.preprocessing import normalize | ||
134 | W_common = np.array(W_common) | ||
135 | W_common = normalize(W_common) | ||
136 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) | ||
137 | vect.fit(clean_src_corpus + clean_target_corpus) | ||
138 | X_train_idf = vect.transform(clean_src_corpus) | ||
139 | X_test_idf = vect.transform(clean_target_corpus) | ||
140 | |||
141 | vect_tf = CountVectorizer(vocabulary=common, dtype=np.double) | ||
142 | vect_tf.fit(clean_src_corpus + clean_target_corpus) | ||
143 | X_train_tf = vect_tf.transform(clean_src_corpus) | ||
144 | X_test_tf = vect_tf.transform(clean_target_corpus) | ||
145 | |||
146 | import ot | ||
147 | from lapjv import lapjv | ||
148 | from sklearn.neighbors import KNeighborsClassifier | ||
149 | from sklearn.metrics import euclidean_distances | ||
150 | from sklearn.externals.joblib import Parallel, delayed | ||
151 | from sklearn.utils import check_array | ||
152 | from sklearn.metrics.scorer import check_scoring | ||
153 | from pathos.multiprocessing import ProcessingPool as Pool | ||
154 | from sklearn.metrics import euclidean_distances | ||
155 | |||
156 | class WassersteinDistances(KNeighborsClassifier): | ||
157 | """ | ||
158 | Implements a nearest neighbors classifier for input distributions using the Wasserstein distance as metric. | ||
159 | Source and target distributions are l_1 normalized before computing the Wasserstein distance. | ||
160 | Wasserstein is parametrized by the distances between the individual points of the distributions. | ||
161 | In this work, we propose to use cross-lingual embeddings for calculating these distances. | ||
162 | |||
163 | """ | ||
164 | def __init__(self, W_embed, n_neighbors=1, n_jobs=1, verbose=False, sinkhorn= False, sinkhorn_reg=0.1): | ||
165 | """ | ||
166 | Initialization of the class. | ||
167 | Arguments | ||
168 | --------- | ||
169 | W_embed: embeddings of the words, np.array | ||
170 | verbose: True/False | ||
171 | """ | ||
172 | self.sinkhorn = sinkhorn | ||
173 | self.sinkhorn_reg = sinkhorn_reg | ||
174 | self.W_embed = W_embed | ||
175 | self.verbose = verbose | ||
176 | super(WassersteinDistances, self).__init__(n_neighbors=n_neighbors, n_jobs=n_jobs, metric='precomputed', algorithm='brute') | ||
177 | |||
178 | def _wmd(self, i, row, X_train): | ||
179 | union_idx = np.union1d(X_train[i].indices, row.indices) | ||
180 | W_minimal = self.W_embed[union_idx] | ||
181 | W_dist = euclidean_distances(W_minimal) | ||
182 | bow_i = X_train[i, union_idx].A.ravel() | ||
183 | bow_j = row[:, union_idx].A.ravel() | ||
184 | if self.sinkhorn: | ||
185 | return ot.sinkhorn2(bow_i, bow_j, W_dist, self.sinkhorn_reg, numItermax=50, method='sinkhorn_stabilized',)[0] | ||
186 | else: | ||
187 | return ot.emd2(bow_i, bow_j, W_dist) | ||
188 | |||
189 | def _wmd_row(self, row): | ||
190 | X_train = self._fit_X | ||
191 | n_samples_train = X_train.shape[0] | ||
192 | return [self._wmd(i, row, X_train) for i in range(n_samples_train)] | ||
193 | |||
194 | def _pairwise_wmd(self, X_test, X_train=None): | ||
195 | n_samples_test = X_test.shape[0] | ||
196 | |||
197 | if X_train is None: | ||
198 | X_train = self._fit_X | ||
199 | pool = Pool(nodes=self.n_jobs) # Parallelization of the calculation of the distances | ||
200 | dist = pool.map(self._wmd_row, X_test) | ||
201 | return np.array(dist) | ||
202 | |||
203 | def fit(self, X, y): # X_train_idf | ||
204 | X = check_array(X, accept_sparse='csr', copy=True) # check if array is sparse | ||
205 | X = normalize(X, norm='l1', copy=False) | ||
206 | return super(WassersteinDistances, self).fit(X, y) # X_train_idf, np_ones(document collection size) | ||
207 | |||
208 | def predict(self, X): | ||
209 | X = check_array(X, accept_sparse='csr', copy=True) | ||
210 | X = normalize(X, norm='l1', copy=False) | ||
211 | dist = self._pairwise_wmd(X) | ||
212 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | ||
213 | return super(WassersteinDistances, self).predict(dist) | ||
214 | |||
215 | def kneighbors(self, X, n_neighbors=1): # X : X_train_idf | ||
216 | X = check_array(X, accept_sparse='csr', copy=True) | ||
217 | X = normalize(X, norm='l1', copy=False) | ||
218 | dist = self._pairwise_wmd(X) | ||
219 | dist = dist * 1000 # for lapjv, small floating point numbers are evil | ||
220 | return lapjv(dist) # and here is the matching part | ||
221 | |||
222 | def mrr_precision_at_k(golden, preds, k_list=[1,]): | 74 | def mrr_precision_at_k(golden, preds, k_list=[1,]): |
223 | """ | 75 | """ |
224 | Calculates Mean Reciprocal Error and Hits@1 == Precision@1 | 76 | Calculates Mean Reciprocal Error and Hits@1 == Precision@1 |
@@ -234,32 +86,117 @@ def mrr_precision_at_k(golden, preds, k_list=[1,]): | |||
234 | precision_at[k_index] += 1 | 86 | precision_at[k_index] += 1 |
235 | return my_score/len(golden), (precision_at/len(golden))[0] | 87 | return my_score/len(golden), (precision_at/len(golden))[0] |
236 | 88 | ||
237 | print(f'WMD - tfidf: {source_lang} - {target_lang}') | 89 | def main(args): |
238 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14) | 90 | |
239 | clf.fit(X_train_idf[:instances], np.ones(instances)) | 91 | source_lang = args.source_lang |
240 | row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | 92 | target_lang = args.target_lang |
241 | result = zip(row_ind, col_ind) | 93 | |
242 | hit_one = len([x for x,y in result if x == y]) | 94 | source_vectors_filename = args.source_vector |
243 | print(f'{hit_one} definitions have been mapped correctly') | 95 | target_vectors_filename = args.target_vector |
244 | 96 | vectors_source = load_embeddings(source_vectors_filename) | |
245 | import csv | 97 | vectors_target = load_embeddings(target_vectors_filename) |
246 | percentage = hit_one / instances * 100 | 98 | |
247 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | 99 | source_defs_filename = args.source_defs |
248 | with open('/home/syigit/multilang_results/wmd_matching_result.csv', 'a') as f: | 100 | target_defs_filename = args.target_defs |
249 | writer = csv.writer(f) | 101 | |
250 | writer.writerow(fields) | 102 | batch = args.batch |
251 | 103 | mode = args.mode | |
252 | print(f'Sinkhorn - tfidf: {source_lang} - {target_lang}') | 104 | defs_source = [line.rstrip('\n') for line in open(source_defs_filename, encoding='utf8')] |
253 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=True) | 105 | defs_target = [line.rstrip('\n') for line in open(target_defs_filename, encoding='utf8')] |
254 | clf.fit(X_train_idf[:instances], np.ones(instances)) | 106 | |
255 | row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | 107 | clean_src_corpus, clean_src_vectors, src_keys = clean_corpus_using_embeddings_vocabulary( |
256 | 108 | set(vectors_source.keys()), | |
257 | result = zip(row_ind, col_ind) | 109 | defs_source, |
258 | hit_one = len([x for x,y in result if x == y]) | 110 | vectors_source, |
259 | print(f'{hit_one} definitions have been mapped correctly') | 111 | source_lang, |
260 | 112 | ) | |
261 | percentage = hit_one / instances * 100 | 113 | |
262 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | 114 | clean_target_corpus, clean_target_vectors, target_keys = clean_corpus_using_embeddings_vocabulary( |
263 | with open('/home/syigit/multilang_results/sinkhorn_matching_result.csv', 'a') as f: | 115 | set(vectors_target.keys()), |
264 | writer = csv.writer(f) | 116 | defs_target, |
265 | writer.writerow(fields) | 117 | vectors_target, |
118 | target_lang, | ||
119 | ) | ||
120 | |||
121 | take = args.instances | ||
122 | |||
123 | common_keys = set(src_keys).intersection(set(target_keys)) | ||
124 | take = min(len(common_keys), take) # you can't sample more than length | ||
125 | experiment_keys = random.sample(common_keys, take) | ||
126 | |||
127 | instances = len(experiment_keys) | ||
128 | |||
129 | clean_src_corpus = list(clean_src_corpus[experiment_keys]) | ||
130 | clean_target_corpus = list(clean_target_corpus[experiment_keys]) | ||
131 | |||
132 | if (not batch): | ||
133 | print(f'{source_lang} - {target_lang} : document sizes: {len(clean_src_corpus)}, {len(clean_target_corpus)}') | ||
134 | |||
135 | del vectors_source, vectors_target, defs_source, defs_target | ||
136 | |||
137 | vec = CountVectorizer().fit(clean_src_corpus + clean_target_corpus) | ||
138 | common = [word for word in vec.get_feature_names() if word in clean_src_vectors or word in clean_target_vectors] | ||
139 | W_common = [] | ||
140 | for w in common: | ||
141 | if w in clean_src_vectors: | ||
142 | W_common.append(np.array(clean_src_vectors[w])) | ||
143 | else: | ||
144 | W_common.append(np.array(clean_target_vectors[w])) | ||
145 | |||
146 | if (not batch): | ||
147 | print(f'{source_lang} - {target_lang}: the vocabulary size is {len(W_common)}') | ||
148 | |||
149 | W_common = np.array(W_common) | ||
150 | W_common = normalize(W_common) | ||
151 | vect = TfidfVectorizer(vocabulary=common, dtype=np.double, norm=None) | ||
152 | vect.fit(clean_src_corpus + clean_target_corpus) | ||
153 | X_train_idf = vect.transform(clean_src_corpus) | ||
154 | X_test_idf = vect.transform(clean_target_corpus) | ||
155 | |||
156 | vect_tf = CountVectorizer(vocabulary=common, dtype=np.double) | ||
157 | vect_tf.fit(clean_src_corpus + clean_target_corpus) | ||
158 | X_train_tf = vect_tf.transform(clean_src_corpus) | ||
159 | X_test_tf = vect_tf.transform(clean_target_corpus) | ||
160 | |||
161 | if (mode == 'wmd' or mode == 'all'): | ||
162 | if (not batch): | ||
163 | print(f'WMD - tfidf: {source_lang} - {target_lang}') | ||
164 | |||
165 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14) | ||
166 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
167 | row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
168 | result = zip(row_ind, col_ind) | ||
169 | hit_one = len([x for x,y in result if x == y]) | ||
170 | percentage = hit_one / instances * 100 | ||
171 | |||
172 | if (not batch): | ||
173 | print(f'{hit_one} definitions have been mapped correctly, {percentage}%') | ||
174 | |||
175 | if (batch): | ||
176 | import csv | ||
177 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | ||
178 | with open('wmd_matching_results.csv', 'a') as f: | ||
179 | writer = csv.writer(f) | ||
180 | writer.writerow(fields) | ||
181 | |||
182 | if (mode == 'snk' or mode == 'all'): | ||
183 | if (not batch): | ||
184 | print(f'Sinkhorn - tfidf: {source_lang} - {target_lang}') | ||
185 | |||
186 | clf = WassersteinDistances(W_embed=W_common, n_neighbors=5, n_jobs=14, sinkhorn=True) | ||
187 | clf.fit(X_train_idf[:instances], np.ones(instances)) | ||
188 | row_ind, col_ind, a = clf.kneighbors(X_test_idf[:instances], n_neighbors=instances) | ||
189 | |||
190 | result = zip(row_ind, col_ind) | ||
191 | hit_one = len([x for x,y in result if x == y]) | ||
192 | |||
193 | if (not batch): | ||
194 | print(f'{hit_one} definitions have been mapped correctly') | ||
195 | |||
196 | |||
197 | if (batch): | ||
198 | percentage = hit_one / instances * 100 | ||
199 | fields = [f'{source_lang}', f'{target_lang}', f'{instances}', f'{hit_one}', f'{percentage}'] | ||
200 | with open('sinkhorn_matching_result.csv', 'a') as f: | ||
201 | writer = csv.writer(f) | ||
202 | writer.writerow(fields) | ||