1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
//! # Data Representations
//!
//! We need persistence for [`Block`]s and [`User`]s, not so much for [`Transaction`]s
//!
//! There are around 30 students, a full fledged database would be an overkill (for next year?)
//!
//! Pending transactions are held in memory, these are cleared with every new block
//! Only the last block is held in memory, every block is written to a file
//! Users are held in memory and they're also backed up to text files
use chrono::{NaiveDate, NaiveDateTime};
use lazy_static::lazy_static;
use parking_lot::RwLock;
use serde::{Deserialize, Serialize};
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::fs;
use std::io;
use std::path::PathBuf;
use std::string::String;
use std::sync::Arc;
use std::vec::Vec;
// use crate::validators;
pub type Fingerprint = String;
// TODO: start by reading users from file too <14-04-21, yigit> //
fn block_parser(path: String) -> u64 {
let end_pos = path.find(".block").unwrap();
let block_str = path[9..end_pos].to_string();
let block_u64 : u64 = block_str.parse().unwrap();
block_u64
}
fn last_block_content() -> (bool, String) {
let blocks = read_block_name().unwrap();
if blocks.len() == 0 {
return (false, "".to_string());
}
let last_block = blocks[0].to_str().unwrap();
let mut last_block = block_parser(last_block.to_string());
let mut last_block_index = 0;
for (index, block) in blocks.iter().enumerate() {
let block = block.to_str().unwrap();
let block = block_parser(block.to_string());
if block > last_block {
last_block = block;
last_block_index = index;
}
}
return (true, blocks[last_block_index].to_str().unwrap().parse().unwrap());
}
fn read_block_name() -> io::Result<Vec<PathBuf>> {
let entries = fs::read_dir("./blocks")?
.map(|res| res.map(|e| e.path()))
.collect::<Result<Vec<_>, io::Error>>()?;
Ok(entries)
}
fn create_db_with_last_block(path: String) -> Db {
let file = fs::read(path).unwrap();
let json = std::str::from_utf8(&file).unwrap();
let block: Block = serde_json::from_str(json).unwrap();
let db = Db::new();
*db.blockchain.write() = block;
return db;
}
/// Creates a new database, uses the previous last block if one exists
pub fn create_database() -> Db {
fs::create_dir_all("blocks").unwrap();
fs::create_dir_all("users").unwrap();
let (res, path) = last_block_content();
if res {
return create_db_with_last_block(path);
} else {
return Db::new();
}
}
/// A JWT Payload/Claims representation
///
/// https://tools.ietf.org/html/rfc7519#section-4.1
///
/// - `tha`: Transaction Hash, String (custom field)
/// - `iat`: Issued At, Unix Time, epoch
/// - `exp`: Expiration Time, epoch
#[derive(Debug, Serialize, Deserialize, PartialEq)]
pub struct Claims {
pub tha: String,
pub iat: usize,
pub exp: usize,
}
/// Global Database representation
///
/// [`Db::blockchain`] is just the last block that was mined. All the blocks are written to disk as text
/// files whenever they are accepted.
///
/// [`Db::pending_transactions`] is the in memory representation of the waiting transactions. Every
/// user can have only one outstanding transaction at any given time.
///
/// [`Db::users`] is the in memory representation of the users, with their public keys, metu_ids and
/// gradecoin balances.
#[derive(Debug, Clone)]
pub struct Db {
pub blockchain: Arc<RwLock<Block>>,
pub pending_transactions: Arc<RwLock<HashMap<Fingerprint, Transaction>>>,
pub users: Arc<RwLock<HashMap<Fingerprint, User>>>,
}
impl Db {
fn new() -> Self {
let mut users: HashMap<Fingerprint, User> = HashMap::new();
let bank_acc = MetuId::new("bank".to_owned(), "P7oxDm30g1jeIId".to_owned()).unwrap();
users.insert(
"31415926535897932384626433832795028841971693993751058209749445923".to_owned(),
User {
user_id: bank_acc,
public_key: "null".to_owned(),
balance: 27 * 80,
},
);
Db {
blockchain: Arc::new(RwLock::new(Block::new())),
pending_transactions: Arc::new(RwLock::new(HashMap::new())),
users: Arc::new(RwLock::new(users)),
}
}
}
/// A transaction between `source` and `target` that moves `amount`
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq)]
pub struct Transaction {
pub by: Fingerprint,
pub source: Fingerprint,
pub target: Fingerprint,
pub amount: i32,
pub timestamp: NaiveDateTime,
}
/// A block that was proposed with `transaction_list` and `nonce` that made `hash` valid, 6 zeroes
/// at the left hand side of the hash (24 bytes)
///
/// We are mining using blake2s algorithm, which produces 256 bit hashes. Hash/second is roughly
/// 20x10^3.
///
/// https://serde.rs/container-attrs.html might be valuable to normalize the serialize/deserialize
/// conventions as these will be hashed
///
#[derive(Serialize, Deserialize, Debug, PartialEq)]
pub struct Block {
#[serde(skip_serializing_if = "Vec::is_empty")]
pub transaction_list: Vec<Fingerprint>,
pub nonce: u32,
pub timestamp: NaiveDateTime,
pub hash: String,
}
/// For prototyping and letting serde handle everything json
#[derive(Serialize, Deserialize, Debug, PartialEq)]
pub struct NakedBlock {
#[serde(skip_serializing_if = "Vec::is_empty", default)]
pub transaction_list: Vec<Fingerprint>,
pub nonce: u32,
pub timestamp: NaiveDateTime,
}
impl Block {
/// Genesis block
pub fn new() -> Block {
Block {
transaction_list: vec!["gradecoin_bank".to_owned()],
nonce: 0,
timestamp: NaiveDate::from_ymd(2021, 04, 11).and_hms(20, 45, 00),
hash: String::from("not_actually_mined"),
}
}
}
/// Simply a Student
#[derive(Serialize, Deserialize, Debug, PartialEq)]
pub struct User {
pub user_id: MetuId,
pub public_key: String,
pub balance: i32,
}
/// The values are hard coded in [`OUR_STUDENTS`] so MetuId::new() can accept/reject values based on that
#[derive(Serialize, Deserialize, Debug, PartialEq)]
pub struct MetuId {
id: String,
passwd: String,
}
/// The plaintext of the initial user authentication request
#[derive(Serialize, Deserialize, Debug, PartialEq)]
pub struct AuthRequest {
pub student_id: String,
pub passwd: String,
pub public_key: String,
}
/// Ciphertext of the initial authentication request, or what we will receive
#[derive(Serialize, Deserialize, Debug)]
pub struct InitialAuthRequest {
pub c: String,
pub iv: [u8; 32],
pub key: String,
}
lazy_static! {
static ref OUR_STUDENTS: HashSet<(&'static str, &'static str)> = {
[
("e254275", "DtNX1qk4YF4saRH"),
("e223687", "cvFEs4XLjuGBD1v"),
("e211024", "voQAcxiKJmEXYRT"),
("e209888", "O75dli6AQtz2tUi"),
("e223725", "xXuTD3Y4tyrv2Jz"),
("e209362", "N7wGm5XU5zVWOWu"),
("e209898", "aKBFfB8fZMq8pVn"),
("e230995", "TgcHGlqeFhQGx42"),
("e223743", "YVWVSWuIHplJk9C"),
("e223747", "8LAeHrsjnwXh59Q"),
("e223749", "HMFeJqVOzwCPHbc"),
("e223751", "NjMsxmtmy2VOwMW"),
("e188126", "QibuPdV2gXfsVJW"),
("e209913", "kMxJvl2vHSWCy4A"),
("e203608", "mfkkR0MWurk6Rp1"),
("e233013", "GCqHxdOaDj2pWXx"),
("e216982", "2Z0xmgCStnj5qg5"),
("e217185", "BcaZNlzlhPph7A3"),
("e223780", "2KvVxKUQaA9H4sn"),
("e194931", "hsC0Wb8PQ5vzwdQ"),
("e223783", "ETUJA3kt1QYvJai"),
("e254550", "rPRjX0A4NefvKWi"),
("e217203", "lN3IWhGyCrGfkk5"),
("e217477", "O9xlMaa7LanC82w"),
("e223786", "UxI6czykJfp9T9N"),
("e231060", "VJgziofQQPCoisH"),
("e223795", "pmcTCKox99NFsqp"),
("bank", "P7oxDm30g1jeIId"),
]
.iter()
.cloned()
.collect()
};
}
impl fmt::Display for MetuId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.id)
}
}
impl MetuId {
pub fn new(id: String, pwd: String) -> Option<Self> {
if OUR_STUDENTS.contains(&(&*id, &*pwd)) {
Some(MetuId {
id: id,
passwd: pwd,
})
} else {
None
}
}
}
|