
CENG567: Homework #3

Yiğit Sever

December 2, 2020

1 Job Scheduling
First we will state the variables we will use. A job ni ∈ n is split into preprocessing pi ∈ p and indexing
fi ∈ f per the question text. With the given question text, we will ignore any kind of utilisation or
efficiency concerns. In other words, we will not care about the number of PCs we employ nor the time
they will stay idle. So, every indexing job fi ∈ f will be run on a separate PC.

Since we cannot pipeline the preprocessing jobs pi ∈ p, any kind of real choice we have will be done
on the fi ∈ f . The trivial case is when the preprocessing jobs are the “bottleneck” of the system, where;

∀pi ∈ p > ∀fi ∈ f
The completion time in this case is minimized by sorting the fi ∈ f and placing the shortest fi last.

Figure 1: The trivial case where preprocessing jobs are all longer than the indexing jobs

This approach extends to the case where the preprocessing time can be shorter than the indexing
time as well. In the example given in Figure 2, two preprocessing jobs p1 and p2 both take 1 unit of
time. Whereas, the indexing jobs tied to the preprocessing jobs f1 and f2 take 5 and 1 units of time,
respectively. By scheduling the preprocessing task that is tied to the longest indexing job p1 first, we can
finish the whole computation in 6 time units which takes 7 time units in the other case.

Formally, the algorithm we propose simply sorts the fi ∈ f in O(n log(n)) time and schedules the jobs
with respect to fi ∈ f (so the pi ∈ p tied to fi ∈ f) from longest to shortest.

2 Spanning Tree
In this question, leveraging the discussion on the lecture forum, we know that there are n = |E| edges in
G = (V,E) in which k+ δ edges are red and the rest are white. k is not given as an input in the question
text but we will assume so to continue with the discussion, otherwise the algorithm cannot be properly
stated.

Given G = (V,E) where r ≤ |E| edges are red, can we find k such edges that form a spanning tree.
We will start by running Kruskal’s algorithm on G with a modification; we will assign a positive

weight γ on every white edge and 0 on every red edge. Kruskal’s algorithm will pick only red edges as a
result. This will either;

1

https://odtuclass.metu.edu.tr/mod/forum/discuss.php?d=14248

(a) The longest task is scheduled first (b) The longest task is scheduled last

Figure 2: The worked example of the cases

• yield a MST with less than k edges. In this case, we can state no such tree with k red edges exists
and report this per case (ii) in the question text.

• yield a MST with exactly k edges, which we can return immediately per case (i) in the question
text.

• yield a MST with more than k edges, which we will have to continue operating with.

Since we are continuing with the algorithm, we can name the minimum spanning tree we got from
the steps above Tr.

At this point, we should prepare another MST using only white edges. Since the MST we are aiming
to return at the end of the algorithm does not have to consists of only red edges, we can substitute white
edges with respect to either Cut Property or Cycle Property as given in the Greedy Algorithms II lecture
notes.

We will prepare a MST with only white edges by setting the weights of white edges on G to 0 and red
edges on G to β and running Kruskal’s algorithm on G. Kruskal’s algorithm will pick only white edges
as a result and we will call this tree Tw. If Tw does not contain at least k −E′ for Tr = (V,E′) edges we
will conclude that no such tree exists and report per case (ii).

Now, with Tr and Tw, we are aiming to reduce the number of red edges in Tr to k by removing a red
edge from it and connecting the tree back using a white edge from Tw. Since both Tr and Tw are MST,
they have V − 1 edges, removing any edge will disconnect the tree and adding any edge will introduce a
cycle, per the definition of trees.

Our algorithm is then as follows;

1. Remove an edge e ∈ E(Tr) that is not in Tw.

2. We can add e to Tw but this will introduce a cycle (per above). However, we can pick an edge in
the newly introduced cycle in Tw that is not in Tr and add that edge e′ to Tw. We are able to do
this since trees cannot contain cycles hence at least one of the edges in the newly introduced cycle
has to be missing from Tr.

3. When we have k red edges (and V − k − 1 white edges) in Tr, then we can report it per case (i).

The cycle checking step, step 2 in the algorithm above uses the Union Find. Since we did not go into
the detail of Union Find in the lectures we will use the naive approach which uses O(n2) operations. On
top of that, we have to run Kruskal’s algorithm twice for Tr and Tw which runs in order O(k log(n)) (k
can be substituted with the number of white edges, if higher). Overall, the runtime of the algorithm is
O(n2k log(n)).

2

3 Shortest-paths and min spanning trees

3.1 a
We will assume the tree of shortest paths is a spanning tree (otherwise node s on its own is a tree and
the answer is trivial).

For a graph G = (V,E), we can have T = (V,E′) which is a tree of shortest paths and a minimum
spanning tree T ′ = (V,E′′). Take any edge incident to s and call it k. k = (s, x) is the minimum weighted
edge from s to x per definition of the tree of shortest paths. Suppose that the MST T ′ does not include
k. This implies that there exists a path in T ′ s x that does not include k. Adding k to the MST will
introduce a cycle but we can break this cycle by using the Cycle property given in the Greedy Algorithms
II lecture notes. Since k = (s, x) is the minimum weighted edge, it will not get deleted which means MST
should have included k to begin with.

So it is not possible for a tree of shortest paths and a MST to not share any edges.

x

s

S

k

3.2 b
Given the acyclic digraph G = (V,E) and an arborescence A ⊂ E with the given conditions in the
question text, A itself is then a minimum cost arborescence in G. Take any e = (v, t) ∈ A. If e is part of
some minimum cost arborescence in G then it is the cheapest incoming edge for t per the lecture notes.
A is built up from such e and the algorithm for building an arborescence in G per the lecture notes is
picking the cheapest incoming edge for every node and the graph G is acyclic meaning that we cannot
form accidental cycles by including every e ∈ E, A is a minimum-cost arborescence in G.

3

	Job Scheduling
	Spanning Tree
	Shortest-paths and min spanning trees
	a
	b

