
CENG 567 Design and Analysis of Algorithms Fall 2020

Homework 3 - Greedy Algorithms

Released: 20/11/2020 Due: 30/11/2020

Instructions. You may work with other students, but you must individually write your
solutions in your own words. If you work with other students or consult outside sources
(such as Internet/book), cite your sources.

If you are asked to design an algorithm, provide:
(a) a description of the algorithm in English and, if helpful pseudocode,
(b) at least one worked example or diagram to show more precisely how your algorithm
works,
(c) a proof (or indication) of the correctness of the algorithm,
(d) an analysis of the running time of the algorithm.

Submissions. Submit a pdf file through odtuclass. LaTeX or Word typed submission is
required.

1. Job scheduling
Consider distributed indexing of documents. You have one supercomputer and an unlimited
number of affordable PCs. The overall process is broken into n distint jobs which can be
performed independently. Each job has two steps: preprocessing and indexing. The prepro-
cessing step is performed on the supercomputer and the indexing is finished on one of the
PCs. Thus, each job needs pi preprocessing time and fi finishing the index time. While the
supercomputer can work on only a single job at a time, the PCs can work independently,
finishing the jobs in parallel. When the first job in order is done on supercomputer, it is
passed to a PC for indexing; at that point the next job is fed to the supercomputer and when
its preprocessing step is done, it is passed to a (possibly different) PC without waiting for
the first job to finish.

You want to minimize the completion time which is the earliest time at which all jobs will
have finished processing on the PCs. Give a polynomial-time greedy algorithm that finds
an ordering of the jobs for the supercomputer with as small completion time as possible.
Describe your algorithm by explicitly stating the greedy choice you make. Prove that your
algorithm minimizes the completion time. Also give the running time complexity of your
algorithm.

2. Spanning Tree
Assume you are given a graph G(V,E) where each edge is labelled red or white. Give a
polynomial-time algorithm that takes G, and either (i) returns a spanning tree with exactly
k edges labelled red, or (ii) reports correctly that no such tree exists. Note that this can
be a valid real world problem. Consider a connected graph of n nodes where each node is a

1



district and the edges represent roads. Two municipalities maintain a subset of roads. Thus
each edge is labeled by one of the municipalities. Suppose a spanning tree of the graph will
be chosen to upgrade the roads corresponding to the edges of the spanning tree, with the
constraint that k edges will belong to one municipality and n−k edges will belong to the other.

3. Shortest-paths and min spanning trees
a) Suppose you are given a weighted graph G(V,E) with a distinguished node s and where
all edge weights are positive and distinct. Is it possible for a tree of shortest paths from s
and a minimum spanning tree in G to not share any edges? If so, give an example. If not,
give a reason.
b) In class we discussed the minimum-cost arborescence in directed graphs. Now, consider
the case for Directed Acyclic Graphs (DAG). As in general directed graphs, there can be
many minimum-cost solutions. Suppose you are given a directed acyclic graph G(V,E) and
an arborescence A ⊆ E such that for every e ∈ A, e belongs to some minimum-cost arbores-
cence in G. Can we conclude that A itself must be a minimum-cost arborescence in G? Give
a proof or a counter example with explanation.

2


