
CENG567: Homework #2

Yiğit Sever

November 15, 2020

1 Checking Consistency of Judgements
Given the collection of n butterflies and a potential judgement between every pair (or not if the judgement
is ambiguous), we have a graph G = (V,E) with n = |V | vertices and |E| = m ≤ n(n−1)

2 edges, with
every edge (i, j) ∈ E labelled either “same” or “different”, assuming (i, j) is not judged again as (j, i). At
the end of our algorithm, the vertices should be consistently labelled as either A and B or our algorithm
should be able to prove that G cannot be labelled as so.

A modified graph traversal using either BFS or DFS will work. Here we will modify the graph traversal
given on page 42 on our 3rd lecture slides that uses BFS. The input of the algorithm is any node s ∈ E.
If, due to ambiguous (i.e. missing) nodes, the graph is not connected, the algorithm should be run on a
new undiscovered node until every connected component is discovered.

Algorithm 1: Modified graph traversal algorithm so solve judge-
ment consistency checking problem
function consistency_check(s: node)

Data: K = data structure of discovered nodes
Result: boolean = whether G is consistent or not
label s as A /* the opposite label is B */
put s in K
while K is not empty do

take a node v from K
if v is not marked “explored” then

mark v “explored”
for each edge (v, w) incident to v do

if w is labelled then
if the label of w is not consistent with the label
of v with respect to the judgement (v, w) then

terminate the algorithm; G is inconsistent
end if

else
if (v, w) is labelled “same” then

label w with the label of v
else /* (v, w) is labelled “different” */

label w with the opposite label of v
end if

end if
put w in K

end for
end if

end while
the spanned connected component is consistent

end

With the assumption that accessing the labels (u,w) takes O(1) time this algorithm has the same
running time as BFS; O(m+ n).

To give a short proof, consider the scenario below;

1

aA
b A

c B

dA

S
D

?

S

Consider the situation where we started at node a with the label A, labelled b with A due to “same”
(a, b) edge and labelled d with A due to “same” (a, d) edge. Node c will be labelled with B due to “different”
(b, c) edge. Now, depending on the judgement on (or lack thereof) (d, c) edge, the graph will be either
consistent (if “different”) or inconsistent (if “same”). Since the modified BFS above visits every node
at least once and considers every edge at least once (property of BFS), an inconsistent path will be
discovered or none will occur, meaning a consistent graph.

2 Reachability
The intuition for this question can be illustrated as follows;

If G is strongly connected then the answer is trivial; every vertex have the same min(u) = 1.
For a directed acyclic graph, consider the scenario below;

a b c d

L(u) = 4
L(u) = 1 L(u) = 3 L(u) = 2

We can assign the min(u) values on this directed acyclic graph by reversing the direction of the edges
and traversing the graph, keeping a minimum min(u) encountered so far for the nodes;

a b c d

L(u) = 4
L(u) = 1 L(u) = 3 L(u) = 2

min(u) = 1 min(u) = 1 min(u) = 2 min(u) = 2

Starting from the “root” d, the min(u) is 2, which is assigned to the immediate neighbours of d, c and
a. When the traversal reaches b, b sets the current min(u) to 1 and a’s min(u) value is updated to 1 as
well.

With the intuition out of the way, we will generalize the problem. First, compute all strongly connected
components (SCCs) of G by using (Tarjan 1972) per page 72 of the 3rd lecture notes in O(E + V) time.
Instead of labelling the SCCs with their root node, we will initially label all nodes of the SCC F ′ with
the min(u) of the connected component; min(a) of a ∈ F ′ = min {L(w) : w ∈ F ′}.

Then, by ignoring the tree edges, shrink the graph G such that E′ = {(v, w) | v ∈ F ′, w ∈ F ′′},
leaving only cross links behind. This step takes another O(E + V) time.

Now run the topological sort algorithm presented in page 84 of the 3rd lecture notes. This operation
is yet again O(E + V).

We now have a scenario like the one illustrated above. Reverse the direction of the edges on the graph
that have been output by the topological sort and starting from the new root node, traverse the graph
downwards and update the min(u) of every SCC in O(m+ n) time as follows;

2

Algorithm 2: Updating min(u) of the SCCs
Data: G′ = topological sorted G with reversed edges
Result: min(u) for all vertices u ∈ V
minnest←− min(root)
while traversing G′ downwards with current node v do // m+ n

if min(v) < minnest then
minnest←− min(v)

else
label v as minnest

end if
end while

Finally, update the min(u) of every node w ∈ G to match the cross link edges of the SCC they belong
to. This operation is yet another O(m+ n) traversal.

References
Tarjan, R. (1972). “Depth-First Search and Linear Graph Algorithms”. In: SIAM J. Comput. doi: 10.

1137/0201010.

3

https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010

	Checking Consistency of Judgements
	Reachability

