Homework 2-Graphs

Instructions. You may work with other students, but you must individually write your solutions in your own words. If you work with other students or consult outside sources (such as Internet/book), cite your sources.

If you are asked to design an algorithm, provide: (a) the pseudocode or precise description in words of the algorithm, (b) an explanation of the intuition for the algorithm, (c) a proof of correctness, (d) the running time of your algorithm and (e) justification for your running time analysis.

Submissions. Submit a pdf file through odtuclass. LaTeX or Word typed submission is required.

1. Checking consistency of judgments. (shorter rewording of K\&T Ch 3 Ex 4)

Given a collection of n butterflies, amateur lepidopterists want to divide them into two groups: those that belong to specie A and those that belong to specie B. They study each pair of specimens carefully side by side. They label each pair of specimens i and j either "same" or "different". They may also call the pair as "ambiguous" if they have no judgment on a given pair. Given n specimens and m judgments (either "same" or "different") they want to know if these judgments are consistent with the idea that each butterfly is from one of the species A or B . In other words the m judgments will be consistent if it is possible to label each specimen either A or B in such a way that for each pair (i, j) labelled "same", it is the case that i and j have the same label; and for each pair (i, j) labelled "different", it is the case that i and j have the different labels.

Give an algorithm with running time $O(m+n)$ that determines whether the m judgments are consistent.
2. Reachability (Cormen, Leiserson, Rivest, Stein, problem 22-4)

Let $G=(V, E)$ be a directed graph in which each vertex $u \in V$ is labeled with a unique integer $L(u)$ from the set $\{1,2, \ldots,|V|\}$. For each vertex $u \in V$, let $R(u)=\{v \in V: u \rightsquigarrow v\}$ be the set of vertices that are reachable from u. Define $\min (u)$ to be the vertex in $R(u)$ whose label is minimal, i.e., $\min (u)$ is the vertex v such that $L(v)=\min \{L(w): w \in R(u)\}$. Give an $O(V+E)$ time algorithm that computes $\min (u)$ for all vertices $u \in V$.

