summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex36
1 files changed, 35 insertions, 1 deletions
diff --git a/main.tex b/main.tex
index da46b2a..ceb8e92 100644
--- a/main.tex
+++ b/main.tex
@@ -22,6 +22,8 @@
22\author{Yiğit Sever} 22\author{Yiğit Sever}
23\date{\today} 23\date{\today}
24 24
25\addbibresource{mylib.bib}
26
25%---------------------------------------------------------------------------------------- 27%----------------------------------------------------------------------------------------
26 28
27\begin{document} 29\begin{document}
@@ -80,8 +82,40 @@ A modified graph traversal using either BFS or DFS (since a node can be discover
80 82
81With the assumption that accessing the labels $(u, w)$ takes $\mathcal{O}(1)$ time this algorithm has the same running time as BFS; $\mathcal{O}(m+n)$. 83With the assumption that accessing the labels $(u, w)$ takes $\mathcal{O}(1)$ time this algorithm has the same running time as BFS; $\mathcal{O}(m+n)$.
82 84
83
84\section{Reachability}% 85\section{Reachability}%
85\label{sec:reachability} 86\label{sec:reachability}
86 87
88First, compute all strongly connected components (SCCs) of $G$ by using~\parencite{tarjanDepthFirst1972} per \emph{page 72} of the \nth{3} lecture notes in $\mathcal{O}(E+V)$ time. Instead of labelling the SCCs with the root node, we will initially label all nodes of the SCC $F'$ with the $min(u)$ of the connected component.
89
90Then, by ignoring the tree edges, shrink the graph $G$ such that $E' = {(v, w)~|~v \in F', w \in F''}$, leaving only cross links behind. This step takes another $\mathcal{O}(E+V)$ time.
91
92Now run the topological sort algorithm presented in \emph{page 84} of the \nth{3} lecture notes this operation is yet again $\mathcal{O}(E+V)$.
93
94Finally, reverse the direction of the edges on the graph that have been output by the topological sort and starting from the new root node, traverse the graph downwards and update the $min(u)$ of every SCC as follows;
95
96{\centering
97 \begin{minipage}{.7\linewidth}
98 \begin{algorithm}[H]
99 \DontPrintSemicolon{}
100 \SetAlgoLongEnd{}
101 \KwData{$G'$ = topological sorted G with reversed edges}
102 \KwResult{$\min(u)$ for all vertices $u \in V$}
103 $\text{mostmin} \longleftarrow \min(\text{root})$\;
104 \While{traversing $G'$ downwards with current node $v$}{
105 \uIf{$\min(v) < mostmin$}{
106 $\text{mostmin} \longleftarrow \min(v)$\;
107 }
108 \Else{
109 label $v$ as $mostmin$
110 }
111 }
112 \caption{Updating $\min(u)$ of the SCCs}%
113 \label{alg:question_2}
114 \end{algorithm}
115 \end{minipage}
116 \par
117}
118
119\printbibliography
120
87\end{document} 121\end{document}