
CENG567: Homework #1

Yiğit Sever

November 8, 2020

1 Stable Matching

Use Gale-Shapley algorithm to find a stable matching for the following set of four colleges, four
students and their preference lists.

Question (a)

Gale-Shapley algorithm, from lecture slides, edited for the context

Initialize each person to be free.
while (some student is free and hasn’t applied to every college) {

Choose such a student m
c = 1st college on m’s list to whom m has not yet applied
if (c is free)

assign c to m for potential application (a)
else if (c prefers m to their current applicant m’)

assign m and c for potential application, and m’ to be free (b)
else

c rejects m (c)
}

A quick trace of the algorithm;

1. S1 is free;

(a) applies to first college on their preference list C4;

(b) C4 is free so it accepts and is matched with S1 (a).

2. S2 is free

(a) applies to first college on their preference list; C1

(b) C1 is free so it accepts and is matched with S2 (a).

3. S3 is free;

(a) applies to first college on their preference list; C1

(b) C1 rejects S3 because it prefers S2 to S3 (c).

(c) applies to second college on their preference list; C2

(d) C2 is free so it accepts and is matched with S3 (a).

4. S4 is free;

(a) applies to first college on their preference list; C4
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(b) C4 rejects S4 because it prefers S1 to S4 (c).
(c) applies to second college on their preference list; C3

(d) C3 is free so it accepts and is matched with S4 (a).

5. There are no more free students to match, algorithm terminates.

The final matching and the answer to Question 1(a) is;

S1 → C4

S2 → C1

S3 → C2

S4 → C3

Find another stable matching with the same algorithm.

Question (b)

All executions of Gale-Shapley yield the same stable matching (that is proposer-optimal) and cannot
produce another stable matching like the question text asks for.

Consider a pair of man m and woman w where m has w at the top of his preference list and w
has m at the top of her preference list. Does it always have to be the case that the pairing (m,w)
exist in every possible stable matching? If it is true, give a short explanation. Otherwise, give a
counterexample.

Question (c)

Proof by contradiction. Assume that in the resulting matching of Gale-Shapley, we have S′, where m
is matched with w′ and w is matched with m′.

The definition of stable matching dictates that there is no incentive to exchange, yet in S′ m can
trade up to w since m prefers w to w′ and w can trade up since w prefers m to m′.

S′ could not have occurred since men propose in accordance to their preference list, which w is on top
of for m and no other men that may propose to w can make w switch since they are not more preffered
than m.

Give an instance of n colleges, n students, and their preference lists so that the Gale-Shapley algo-
rithm requires only O(n) iterations, and prove this fact.

Question (d)

For a proposer agnostic formation, arrange the preference lists of colleges and students as follows;

C1 → {S1, Sn, Sn−1, . . . , S2}
C2 → {S2, Sn, Sn−1, . . . , S3}

. . .

Ck → {Sk, Sn, Sn−1, . . . , Sk+1}
. . .

Cn → {Sn, Sn−1, Sn−2, . . . , S1}
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S1 → {C1, Cn, Cn−1, . . . , C2}
S2 → {C2, Cn, Cn−1, . . . , C3}

. . .

Sk → {Ck, Cn, Cn−1, . . . , Ck+1}
. . .

Sn → {Cn, Cn−1, Cn−2, . . . , C1}

Where the student list {S1, S2, . . . , Sn} and college list {C1, C2, . . . , Cn} are shifted.
In this setup, ever proposer will propose to the first suitor in their preference list which is guaranteed

to be free since they are not the first on any other suitor’s preference list.
The algorithm in this instance runs in O(n) iterations, every proposer will follow the (a) branch in

the algorithm given under Question 1.

Give another instance for which the algorithm requires Ω(n2) iterations (that is, it requires at least
cn2 iterations for some constant 0 < c ≤ 1), and prove this fact.

Question (e)

Disclaimer: We have collaborated with CENG567 student Manolya Atalay for this question and
used the answers and explanations given in the linked Mathematics Stack Exchange questiona.

ahttps://math.stackexchange.com/questions/1410898/worst-case-for-the-stable-marriage-problem

i

The worst problem instance for the algorithm (the instance that requires the largest number of steps)
can be inferred as follows;

The highest number of times a man m can propose (every iteration has one proposal in it) to n many
women is n − 1. It cannot be n because it would mean that m did not find a suitable partner (rejected
by everyone), which is contradictory with the algorithm’s perfect matching guarantee.

For n men, in the worst case, each one can propose n − 1 times; n(n − 1). One man has to propose
one last time after getting rejected by n− 1 women, giving the total number of proposals;

n(n− 1) + 1 (1)

As the theoretical highest number of iterations Gale-Shapley can have.
As for the instance that produces this run time;
Men have to arrange their preference list as follows for n > 2.

Mk →

{
Wk,Wk+1, . . . ,Wn−1,W1,W2, . . . ,Wn if k 6= n

Wk−1,Wk, . . . ,Wn−1,W1,W2, . . . ,Wn if k = n
(2)

In other words, the last man’s preference list is identical to one above them.
Women have to arrange their preference list as follows for n > 2;

Wk →

{
Mk+1,Mk, . . . if k 6= n− 1

M1,Mn, . . . if k = n− 1
(3)

The preference list of the last women Wn does not matter neither does the order of the rest of the
men in the preference list of the women given.

We have implemented Gale-Shapley and an instance set creation script to test our findings;
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n=3

n: Men Preference Table
A | 1 2 3
B | 2 1 3
C | 2 1 3
----
Women Preference Table
1| B A C
2| A C B
3| A B C

----
Matching B with 2 (a)
Matching C with 2, B is now free (b)
Matching A with 1 (a)
Matching B with 1, A is now free (b)
Matching A with 2, C is now free (b)
C is rejected by 1 because B is more preffered (c)
Matching C with 3 (a)
Final pairings:
A - 2
B - 1
C - 3

A proposed 2 times
B proposed 2 times
C proposed 3 times
total of 7 times with n(n-1) + 1 = 7
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n=6

n: Men Preference Table
A | 1 2 3 4 5 6
B | 2 3 4 5 1 6
C | 3 4 5 1 2 6
D | 4 5 1 2 3 6
E | 5 1 2 3 4 6
F | 5 1 2 3 4 6
----
Women Preference Table
1| B A C D E F
2| C B A D E F
3| D C A B E F
4| E D A B C F
5| A F B C D E
6| A B C D E F

----
Matching D with 4 (a)
Matching A with 1 (a)
Matching F with 5 (a)
E is rejected by 5 because F is more preffered (c)
Matching C with 3 (a)
Matching B with 2 (a)
// --- edited out for space ---
C is rejected by 1 because A is more preffered (c)
Matching C with 2, B is now free (b)
B is rejected by 3 because D is more preffered (c)
B is rejected by 4 because E is more preffered (c)
B is rejected by 5 because F is more preffered (c)
Matching B with 1, A is now free (b)
A is rejected by 2 because C is more preffered (c)
A is rejected by 3 because D is more preffered (c)
A is rejected by 4 because E is more preffered (c)
Matching A with 5, F is now free (b)
F is rejected by 1 because B is more preffered (c)
F is rejected by 2 because C is more preffered (c)
F is rejected by 3 because D is more preffered (c)
F is rejected by 4 because E is more preffered (c)
Matching F with 6 (a)
Final pairings:
E - 4
B - 1
A - 5
D - 3
C - 2
F - 6

A proposed 5 times
B proposed 5 times
C proposed 5 times
D proposed 5 times
E proposed 5 times
F proposed 6 times
total of 31 times with n(n-1) + 1 = 31
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2 Stable Matching Variation

Consider a Stable Matching problem with men and women. Consider a woman w where she prefers
man m to m′, but both m and m′ are low on her list of preferences. Can it be the case that by
switching the order of m and m′ on her list of preferences (i.e., by falsely claiming that she prefers
m′ to m) and running the algorithm with this modified preference list, w will end up with a man
m′′ that she prefers to both m and m′? Either give a proof that shows such an improvement is
impossible, or give an example preference list for which an improvement for w is possible.

Question (a)

We will give an example instance. Let’s take the example preference list for men; M = x, y, z and
women: W = a, b, c.

Table 1: Preference lists of women

Table 2: Everyone is being truthful

a y x z
b x y z
c x y z

Table 3: a is lying about their preference

a y z x
b x y z
c x y z

In the example given above in Table 1, we have two cases for women, Table 2 where everyone has
given their actual preference list and Table 3 where a has lied about their 2nd and 3rd preferences.

The following is the men’s preference table;

x a b c
y b a c
z a b c

Table 4: The preference lists of the men.

The trace of Gale-Shapley algorithm for the truth telling case with Table 2 and Table 4 is below;

1. Matching x with a (a)

2. Matching y with b (a)

3. z proposes to a but gets rejected because a prefers x more (c)

4. z proposes to b but gets rejected because b prefers y more (c)

5. Matching z with c (a)

Which produces the following matching. Note that a is matched with their 2nd choice.

x→ a

y → b

z → c

Now let’s examine the trace of the algorithm when a lies by providing an altered preference table.
The trace below uses Table 3 and Table 4;

1. Matching y with b (a)

2. Matching z with a (a)

3. x proposes to a but gets rejected because a lies by saying that they like z more (c)
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4. Matching x with b, y is now free (b)

5. Matching y with a, z is now free (b)

6. z proposes to b but gets rejected because b prefers x more (c)

7. Matching z with c (a)

The highlighted lines show that a lies when proposed by x and then is able to trade up to y. The
following it the final matching;

x→ b

y → a

z → c

Woman a was able to get their highest preferred option y by telling a lie. We have proved that an
improvement is possible.

3 Asymptotics

What is the running time of this algorithm as a function of n? Specify a function f such that the
running time of the algorithm is Θ(f(n)).

Question (a)

Algorithm 1: Equivalent algorithm to one given in Question 3,
edited for brevity
for i = 2; i < n; i+ = 1 do /* outer loop */

for j = 1; j < n; j∗ = i do /* inner loop */
Some Θ(1) operation;

end
end

The outer loop runs in linear time O(n) whereas the inner loop requires some deconstruction;
Take the first iteration of the inner loop, i = 2 and j is initialized at 1.

1st iteration→ j = j ∗ i =⇒ j = 2

2nd iteration→ j = 4

3rd iteration→ j = 8

. . .

mth iteration→ j = im < n

m is the last iteration of the inner loop because it hit the stopping condition im < n. Using the
Equations above we can find the running time for the inner loop to hit stopping condition;

im < n

m < logi n

In other words, the inner loop has a running time in the order of O(log n). By the product property
of O-notation we have the running time of O(n loga n), a > 1 for the entire algorithm. The base a is
useful to answer the rest of the question;
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We can specify a function f such as f = n logb(n) where b > 1. From the course slides;

lim
n→∞

n loga n

n logb n
= c

And when the limit of two functions f, g converge to some constant c, then f(n) = Θ(g(n)).

4 Big O and Ω

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove the following conjectures.

Question (a)

f(n) = O(g(n)) implies g(n) = O(f(n))
Q

From the definition of Big O notation given in the lecture slides;

∃ c > 0 and n0 ≥ 0 | 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0 (4)

If we rearrange the right hand side of the Proposition 4;

0 ≤ 1

c
f(n) ≤ g(n)

Or simply,

0 ≤ c′f(n) ≤ g(n) (5)

By the definition of Big O notation, in order for g(n) = O(f(n)) to be true,

∃ k > 0 and n′0 ≥ 0 | 0 ≤ g(n) ≤ k · f(n) ∀n′ ≥ n′0

Has to be true, yet from Equation 5 we know that f(n) multiplied by some constant c′ is strictly
smaller than g(n). The conjecture is false.

f(n) = O((f(n))2)
Q

We can reuse the definition of Big O notation given in Equation 4, and using the question text, we
have;

For c > 1 and n0 > 1;

f(n) ≤ f(n)2 ∀n ≥ n0

take g(n) = f(n)2

f(n) ≤ c · g(n) ∀n ≥ n0

For f(n) ≥ 1. The conjecture is true for asymptotically positive function f(n) but does not hold for
an f(n) < 1.
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f(n) + o(f(n)) = Θ(f(n))
Q

From the definition of Big Theta notation, we are trying to prove a relation such that;

0 ≤ c1 · f(n) ≤ f(n) + o(f(n)) ≤ c2 · f(n) (6)

First, let’s give the little-o notation to remove o(f(n)) from Equation 6;

∀ c > 0 ∃ n0 > 0 | 0 ≤ g(n) < c · f(n) ∀n ≥ n0 (7)

So we can rewrite Equation 6 using Equation 7;

c1 · f(n) ≤ f(n) + g(n) ≤ c2 · f(n) (8)

It’s trivial to pick c1 < 1 to deal with the left hand side of the inequality;

f(n) ≤ f(n) + g(n)

For the right hand side; we can start by picking n0 = 1 and c = 1 in the Equation 7; keeping g(n)
strictly smaller than f(n).

In order to prove the right hand side of the inequality; we can pick c2 > 2 which equals;

f(n) + g(n) ≤ 2 · f(n)

���f(n) + g(n) ≤�2·f(n)

g(n) ≤ f(n)

Which we proved above using Equation 7. This conjecture is true.

For each function f(n) below, find (and prove that)

1. the smallest integer constant H such that f(n) = O(nH)

2. the largest positive real constant L such that f(n) = Ω(nL)

Otherwise, indicate that H or L do not exist.

Question (b)

f(n) = n(n+1)
2

Q

(1) For n0 ≥ 1; n(n+1)
2 is strictly smaller than n2, yet H = 1 is not possible since through the definition

of Big-O notation it implies that for a constant c;

0 ≤ n(n + 1)

2
≤ c · n

�n (n + 1)

2
≤ c ·�n

n + 1

2 �≤c

Hence f(n) = O(n2) and H = 2.
(2) L = 2. We can pick the constant c = 1

2 and write the Big-Ω notation;
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c > 0 and n0 ≥ 0

n(n + 1)

2
≥ 1

2
n2

�n (n + 1)

�2
≥ 1

�2
n�2

n + 1 ≥ n

Does a L > 2 work? Pick any ` > 2;

c > 0 and n0 ≥ 0

n(n + 1)

2
≥ 1

2
n`

n(n + 1)

�2
≥ 1

�2
n`

n(n + 1) ≥ n`

n + 1 ≥ n`−1

1 ≥ n(n`−2 − 1)

The final equation does not hold for n > 1 or the assumed ` > 2 so L > 2 cannot be true.

f(n) =
∑dlogne

k=0
n
2k

Q

It’s beneficial to unpack the infinite sum beforehand;

f(n) =

dlogne∑
k=0

n

2k

=
n

20
+

n

21
+

n

22
+ · · ·+ n

2dlogne

= n
(

1 +
1

21
+

1

22
+ · · ·+ 1

2dlogne

)

The infinite sum approaches 1 as dlog ne → ∞, giving us;

f(n) = 2 · n
(1,2) Finally, H = L = 1 since f(n) is Θ(n). Borrowing the Big-Θ notation from Equation 6 for

c1 = 1 and c2 = 2;

n ≤ f(n) ≤ 2n

f(n) = n(log n)2
Q

n2 v.s. n(log n)2

n1 v.s. (log n)2

√
n v.s.

√
(log n)2

n
1
2 v.s. log n

(1) From the lectures we know that log n is O(nd) for all d.
If log n is O(n

1
2 ) then n(log n)2 is O(n2). H = 2.

(2) For L; we know that f(n) = n(log n)2 > n1 but n(log n)2 < n2 hence L = 1.
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