From f904af1768be984c7d6507bfe3690ad8e226ded8 Mon Sep 17 00:00:00 2001 From: Yigit Sever Date: Mon, 9 Nov 2020 03:04:58 +0300 Subject: final changes --- main.tex | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) (limited to 'main.tex') diff --git a/main.tex b/main.tex index dcb7980..a67b175 100644 --- a/main.tex +++ b/main.tex @@ -131,7 +131,7 @@ $S'$ could not have occurred since men propose in accordance to their preference For a proposer agnostic formation, arrange the preference lists of colleges and students as follows; \begin{gather*}% - \label{eq:student_prefs} + \label{eq:college_prefs} C_{1} \rightarrow \left\{ S_{1}, S_{n}, S_{n-1}, \dots, S_{2} \right\} \\ C_{2} \rightarrow \left\{ S_{2}, S_{n}, S_{n-1}, \dots, S_{3} \right\} \\ \dots \\ @@ -517,6 +517,8 @@ For $c > 1$ and $n_{0} > 1$; For $f(n) \ge 1$. The conjecture is true for asymptotically positive function $f(n)$ but does not hold for an $f(n) < 1$. +\pagebreak + \begin{info}[] $f(n) + o(f(n)) = \Theta(f(n))$ \end{info} @@ -629,7 +631,7 @@ The infinite sum approaches 1 as $\lceil{\log n\rceil} \rightarrow \infty$, givi f(n) = 2 \cdot n \\ \end{equation*} -Finally, $H = L = 1$ since $f(n)$ is $\Theta(n)$. Borrowing the Big-$\Theta$ notation from Equation~\ref{eq:a_big_theta} for $c_1 = 1$ and $c_2 = 2$; +(1,2) Finally, $H = L = 1$ since $f(n)$ is $\Theta(n)$. Borrowing the Big-$\Theta$ notation from Equation~\ref{eq:a_big_theta} for $c_1 = 1$ and $c_2 = 2$; \begin{equation*} n \le f(n) \le 2n @@ -646,11 +648,11 @@ Finally, $H = L = 1$ since $f(n)$ is $\Theta(n)$. Borrowing the Big-$\Theta$ not n^{\frac{1}{2}} \quad v.s. \quad \log{n} \end{align*} -From the lectures we know that $\log{n}$ is $\mathcal{O}(n^{d})$ for all $d$. +(1) From the lectures we know that $\log{n}$ is $\mathcal{O}(n^{d})$ for all $d$. If $\log{n}$ is $\mathcal{O}(n^{\frac{1}{2}})$ then $n(\log{n})^{2}$ is $\mathcal{O}(n^{2})$. $H=2$. -For $L$; we know that $f(n) = n(\log{n})^{2} > n^{1}$ but $n(\log{n})^{2} < n^{2}$ hence L = 1$. +(2) For $L$; we know that $f(n) = n(\log{n})^{2} > n^{1}$ but $n(\log{n})^{2} < n^{2}$ hence $L = 1$. % 1}}} % -- cgit v1.2.3-70-g09d2