From d9b06cc947692e378feee8ae26cdc0cbe055d502 Mon Sep 17 00:00:00 2001 From: Yigit Sever Date: Sat, 7 Nov 2020 04:53:23 +0300 Subject: Last question lest --- main.tex | 11 +++++++++++ 1 file changed, 11 insertions(+) (limited to 'main.tex') diff --git a/main.tex b/main.tex index fe20d1f..cabba40 100644 --- a/main.tex +++ b/main.tex @@ -639,6 +639,17 @@ Finally, $H = L = 1$ since $f(n)$ is $\Theta(n)$. Borrowing the Big-$\Theta$ not $f(n) = n(\log n)^{2}$ \end{info} +\begin{align*} + n^{2} \quad v.s. \quad n(\log{n})^{2} \\ + n^{1} \quad v.s. \quad (\log{n})^{2} \\ + \sqrt{n} \quad v.s. \quad \sqrt{(\log{n})^{2}} \\ + n^{\frac{1}{2}} \quad v.s. \quad \log{n} +\end{align*} + +From the lectures we know that $\log{n}$ is $\mathcal{O}(n^{d})$ for all $d$. + +If $\log{n}$ is $\mathcal{O}(n^{\frac{1}{2}})$ then $n(\log{n})^{2}$ is $\mathcal{O}(n^{2})$. $H=2$. + % 1}}} % -- cgit v1.2.3-70-g09d2