From b8a6b4e3f1778b53cd45bf2ebe2ed8cac279c71f Mon Sep 17 00:00:00 2001 From: Yigit Sever Date: Sun, 8 Nov 2020 22:28:06 +0300 Subject: Answer of the last question --- main.tex | 1 + 1 file changed, 1 insertion(+) (limited to 'main.tex') diff --git a/main.tex b/main.tex index cabba40..dcb7980 100644 --- a/main.tex +++ b/main.tex @@ -650,6 +650,7 @@ From the lectures we know that $\log{n}$ is $\mathcal{O}(n^{d})$ for all $d$. If $\log{n}$ is $\mathcal{O}(n^{\frac{1}{2}})$ then $n(\log{n})^{2}$ is $\mathcal{O}(n^{2})$. $H=2$. +For $L$; we know that $f(n) = n(\log{n})^{2} > n^{1}$ but $n(\log{n})^{2} < n^{2}$ hence L = 1$. % 1}}} % -- cgit v1.2.3-70-g09d2