diff options
-rw-r--r-- | main.tex | 138 | ||||
-rw-r--r-- | structure.tex | 16 |
2 files changed, 121 insertions, 33 deletions
@@ -179,7 +179,7 @@ Whereas every college should arrange their preference list as; | |||
179 | \section{Stable Matching Variation}% | 179 | \section{Stable Matching Variation}% |
180 | \label{sec:stable_matching_variation} | 180 | \label{sec:stable_matching_variation} |
181 | 181 | ||
182 | % stable matching question TODO {{{1 % | 182 | % stable matching question ALMOST {{{1 % |
183 | 183 | ||
184 | \begin{question} | 184 | \begin{question} |
185 | Consider a Stable Matching problem with men and women. | 185 | Consider a Stable Matching problem with men and women. |
@@ -188,24 +188,79 @@ Whereas every college should arrange their preference list as; | |||
188 | Either give a proof that shows such an improvement is impossible, or give an example preference list for which an improvement for $w$ is possible. | 188 | Either give a proof that shows such an improvement is impossible, or give an example preference list for which an improvement for $w$ is possible. |
189 | \end{question} | 189 | \end{question} |
190 | 190 | ||
191 | TRUTH | 191 | Example preference list for men; $M = {x,y,z}$ and women: $W = {a,b,c}$. |
192 | Matching x with a (a) | 192 | |
193 | Matching y with b (a) | 193 | \begin{table}[!htb] |
194 | z is rejected by a because x is more preffered (c) | 194 | \caption{Preference lists of women.} |
195 | z is rejected by b because y is more preffered (c) | 195 | \begin{minipage}{.5\linewidth} |
196 | Matching z with c (a) | 196 | \caption{Everyone is being truthful} |
197 | [('x', 'a'), ('y', 'b'), ('z', 'c')] | 197 | \centering |
198 | 198 | \begin{tabular}{l|lll} | |
199 | LIE | 199 | \textbf{a} & y & x & z \\ |
200 | 200 | \textbf{b} & x & y & z \\ | |
201 | Matching y with b (a) | 201 | \textbf{c} & x & y & z |
202 | Matching z with a (a) | 202 | \end{tabular} |
203 | x is rejected by a because z is more preffered (c) | 203 | \end{minipage}% |
204 | Matching x with b, y is now free (b) | 204 | \begin{minipage}{.5\linewidth} |
205 | Matching y with a, z is now free (b) | 205 | \centering |
206 | z is rejected by b because x is more preffered (c) | 206 | \caption{a is lying about their preference} |
207 | Matching z with c (a) | 207 | \begin{tabular}{l|lll} |
208 | [('x', 'b'), ('y', 'a'), ('z', 'c')] | 208 | \textbf{a} & y & z & x \\ |
209 | \textbf{b} & x & y & z \\ | ||
210 | \textbf{c} & x & y & z | ||
211 | \end{tabular} | ||
212 | \begin{tikzpicture}[overlay] | ||
213 | \draw[red, line width=1pt] (-0.72,0.52) ellipse (0.70cm and 0.2cm); | ||
214 | \end{tikzpicture} | ||
215 | \end{minipage} | ||
216 | \end{table} | ||
217 | |||
218 | % TODO: final polish, highlight the lies <06-11-20, yigit> % | ||
219 | |||
220 | \begin{table}[htb] | ||
221 | \centering | ||
222 | \begin{tabular}{l|lll} | ||
223 | \textbf{x} & a & b & c \\ | ||
224 | \textbf{y} & b & a & c \\ | ||
225 | \textbf{z} & a & b & c | ||
226 | \end{tabular} | ||
227 | \caption{The preference lists of the men.}% | ||
228 | \label{tab:men_pref} | ||
229 | \end{table} | ||
230 | |||
231 | The trace of \emph{Gale-Shapley} algorithm for the truth telling case; | ||
232 | |||
233 | \begin{enumerate} | ||
234 | \item Matching x with a (a) | ||
235 | \item Matching y with b (a) | ||
236 | \item z proposes to a but gets rejected because a prefers x more (c) | ||
237 | \item z proposes to b but gets rejected because b prefers y more (c) | ||
238 | \item Matching z with c (a) | ||
239 | \end{enumerate} | ||
240 | |||
241 | \begin{align*} | ||
242 | x &\rightarrow a \\ | ||
243 | y &\rightarrow b \\ | ||
244 | z &\rightarrow c | ||
245 | \end{align*} | ||
246 | |||
247 | The trace of \emph{Gale-Shapley} algorithm when \emph{a} lies about their preferences; | ||
248 | |||
249 | \begin{enumerate} | ||
250 | \item Matching y with b (a) | ||
251 | \item Matching z with a (a) | ||
252 | \item x proposes to a but gets rejected because a prefers z more (c) | ||
253 | \item Matching x with b, y is now free (b) | ||
254 | \item Matching y with a, z is now free (b) | ||
255 | \item z proposes to b but gets rejected because b prefers x more (c) | ||
256 | \item Matching z with c (a) | ||
257 | \end{enumerate} | ||
258 | |||
259 | \begin{align*} | ||
260 | x &\rightarrow b \\ | ||
261 | y &\rightarrow a \\ | ||
262 | z &\rightarrow c | ||
263 | \end{align*} | ||
209 | 264 | ||
210 | % 1}}} % | 265 | % 1}}} % |
211 | 266 | ||
@@ -371,18 +426,55 @@ Finally, picking $c2 > 2$ proves the conjecture. | |||
371 | 426 | ||
372 | % 1}}} % | 427 | % 1}}} % |
373 | 428 | ||
374 | % question b FULL TODO {{{1 % | 429 | % question b {{{1 % |
375 | % TODO: haven't started yet <05-11-20, yigit> % | 430 | % https://people.cs.umass.edu/~sheldon/teaching/cs311/hw/hw01.pdf |
376 | 431 | ||
377 | \begin{question} | 432 | \begin{question} |
378 | For each function $f(n)$ below, find (and prove that) (1) the smallest integer constant H such that $f(n) = \mathcal{O}(n^H)$, and (2) the largest positive real constant L such that $f(n) = \Omega(n^L)$. | 433 | For each function $f(n)$ below, find (and prove that) |
379 | Otherwise, indicate that H or L do not exist. | 434 | \begin{enumerate} |
435 | \item the smallest integer constant H such that $f(n) = \mathcal{O}(n^H)$ | ||
436 | \item the largest positive real constant L such that $f(n) = \Omega(n^L)$ | ||
437 | \end{enumerate} | ||
438 | Otherwise, indicate that H or L do not exist. | ||
380 | \end{question} | 439 | \end{question} |
381 | 440 | ||
382 | \begin{info}[] | 441 | \begin{info}[] |
383 | $f(n) = \frac{n(n+1)}{2}$ | 442 | $f(n) = \frac{n(n+1)}{2}$ |
384 | \end{info} | 443 | \end{info} |
385 | 444 | ||
445 | (1) For $n_{0} \ge 1$; $\frac{n(n+1)}{2}$ is strictly smaller than $n^{2}$, yet $H=1$ is not possible since through the definition of Big-$\mathcal{O}$ notation it implies that for a \emph{constant} $c$; | ||
446 | |||
447 | \begin{align*} | ||
448 | 0 \le \frac{n(n+1)}{2} &\le c\cdot n \\ | ||
449 | \frac{\cancel{n}(n+1)}{2} &\le c\cdot \cancel{n} \\ | ||
450 | \frac{n+1}{2} &\cancel{\le} c | ||
451 | \end{align*} | ||
452 | |||
453 | Hence $f(n) = \mathcal{O}(n^{2})$ and $H=2$. | ||
454 | |||
455 | % TODO: reread proof, strengthen? <06-11-20, yigit> % | ||
456 | (2)$L=2$. We can pick the constant $c = \frac{1}{2}$ and write the Big-$\Omega$ notation; | ||
457 | |||
458 | \begin{gather*} | ||
459 | c > 0 ~ \text{and} ~ n_{0} \ge 0 \\ | ||
460 | \frac{n(n+1)}{2} \ge \frac{1}{2} n^{2} \\ | ||
461 | \frac{\cancel{n}(n+1)}{\cancel{2}} \ge \frac{1}{\cancel{2}} n^{\cancel{2}} \\ | ||
462 | n+1 \ge n | ||
463 | \end{gather*} | ||
464 | |||
465 | Does a $L>2$ work? Pick any $\ell > 2$; | ||
466 | |||
467 | \begin{gather*} | ||
468 | c > 0 ~ \text{and} ~ n_{0} \ge 0 \\ | ||
469 | \frac{n(n+1)}{2} \ge \frac{1}{2} n^{\ell} \\ | ||
470 | \frac{n(n+1)}{\cancel{2}} \ge \frac{1}{\cancel{2}} n^{\ell} \\ | ||
471 | n(n+1) \ge n^{\ell} \\ | ||
472 | n+1 \ge n^{\ell - 1} \\ | ||
473 | 1 \ge n(n^{\ell - 2} - 1) | ||
474 | \end{gather*} | ||
475 | |||
476 | The final equation does not hold $n>1$ so $L>2$ cannot be true. | ||
477 | |||
386 | \begin{info}[] | 478 | \begin{info}[] |
387 | $f(n) = \sum^{\lceil{\log{n}}\rceil}_{k=0} \frac{n}{2^{k}}$ | 479 | $f(n) = \sum^{\lceil{\log{n}}\rceil}_{k=0} \frac{n}{2^{k}}$ |
388 | \end{info} | 480 | \end{info} |
diff --git a/structure.tex b/structure.tex index e536c85..ae1765b 100644 --- a/structure.tex +++ b/structure.tex | |||
@@ -19,15 +19,20 @@ | |||
19 | % PACKAGES AND OTHER DOCUMENT CONFIGURATIONS | 19 | % PACKAGES AND OTHER DOCUMENT CONFIGURATIONS |
20 | %---------------------------------------------------------------------------------------- | 20 | %---------------------------------------------------------------------------------------- |
21 | 21 | ||
22 | \usepackage[utf8]{inputenc} % Required for inputting international characters | ||
23 | \usepackage[T1]{fontenc} % Output font encoding for international characters | ||
24 | \usepackage{csquotes} | ||
22 | \usepackage{amsmath,amsfonts} % Math packages | 25 | \usepackage{amsmath,amsfonts} % Math packages |
23 | \usepackage{enumerate} % Custom item numbers for enumerations | 26 | \usepackage{enumerate} % Custom item numbers for enumerations |
24 | \usepackage[ruled]{algorithm2e} % Algorithms | 27 | \usepackage[ruled]{algorithm2e} % Algorithms |
28 | \usepackage[makeroom]{cancel} | ||
25 | % \usepackage{algorithm} | 29 | % \usepackage{algorithm} |
26 | % \usepackage[noend]{algpseudocode} | 30 | % \usepackage[noend]{algpseudocode} |
27 | \usepackage[framemethod=tikz]{mdframed} % Allows defining custom boxed/framed environments | 31 | \usepackage[framemethod=tikz]{mdframed} % Allows defining custom boxed/framed environments |
28 | \usepackage{listings} % File listings, with syntax highlighting | 32 | \usepackage{listings} % File listings, with syntax highlighting |
29 | \usepackage[super]{nth} | 33 | \usepackage[super]{nth} |
30 | \usepackage{csquotes} | 34 | \usepackage{caption} |
35 | \usepackage{tikz} | ||
31 | 36 | ||
32 | \lstset{ | 37 | \lstset{ |
33 | basicstyle=\ttfamily, % Typeset listings in monospace font | 38 | basicstyle=\ttfamily, % Typeset listings in monospace font |
@@ -52,15 +57,6 @@ | |||
52 | } | 57 | } |
53 | 58 | ||
54 | %---------------------------------------------------------------------------------------- | 59 | %---------------------------------------------------------------------------------------- |
55 | % FONTS | ||
56 | %---------------------------------------------------------------------------------------- | ||
57 | |||
58 | \usepackage[utf8]{inputenc} % Required for inputting international characters | ||
59 | \usepackage[T1]{fontenc} % Output font encoding for international characters | ||
60 | |||
61 | % \usepackage{XCharter} % Use the XCharter fonts | ||
62 | |||
63 | %---------------------------------------------------------------------------------------- | ||
64 | % COMMAND LINE ENVIRONMENT | 60 | % COMMAND LINE ENVIRONMENT |
65 | %---------------------------------------------------------------------------------------- | 61 | %---------------------------------------------------------------------------------------- |
66 | 62 | ||